Monte Carlo simulation of the measurement by the 2E technique of the average prompt neutron multiplicity as a function of the mass of fragments from thermal neutron-induced fission of 239Pu

Authors

DOI:

https://doi.org/10.31349/RevMexFis.68.011201

Keywords:

Nuclear fission, fission product yield, prompt neutron multiplicity, fission fragment kinetic energy, plutonium 239

Abstract

Using a Monte Carlo method, we simulate the measurement, by the 2E technique, of the average prompt neutron multiplicity as a function of the mass of fragments from the thermal neutron-induced fission of 239Pu. The input data for the simulation, associated with the primary fragment mass (A), consist of the yield (Y), the distribution of the total kinetic energy characterized by its average ((TKE) ̅) and its standard deviation (σ_TKE), the average prompt neutron multiplicity (ν ̅_s, a sawtooth approach of experimental data), and the slope of neutron multiplicity against total kinetic energy (dν_s/d<TKE>). The output data, associated with the simulated as the fragment mass measured by the 2E technique (µ), consist of the yield (y), the distribution of the total kinetic energy characterized by its average ((tke) ̅) and its standard deviation (σ_tke), and the average prompt neutron multiplicity (ν ̅_µ). In the mass regions A≈115 and A>150, ν ̅_µ is higher than ν ̅_s. This result suggests that, in those mass regions, the 2E experimental values associated with the average neutron multiplicity are overestimated, referred to the corresponding to the primary fragments.

References

S. Bjørnholm and J. E. Lynn, The double-humped fission barrier, Rev. Mod. Phys. 52 (1980) 725, https://doi.org/10.1103/RevModPhys.52.725.

E. E. Maslin, A. L. Rodgers, and W. G. F. Core, Prompt neutron emission from U235 fission fragments, Phys. Rev. 164 (1967) 1520, https://doi.org/10.1103/PhysRev.164.1520.

K. Nishio, Y. Nakagome, H. Yamamoto, and I. Kimura, Multiplicity and energy of neutrons from 235U(nth,f) fission fragments, Nucl. Phys. A. 632 (1998) 540, https://doi.org/10.1016/S0375-9474(98)00008-6.

A. S. Vorobyev, O. A. Shcherbakov, A. M. Gagarski, G. V. Val’ski, and G. A. Petrov, Investigation of the prompt neutron

emission mechanism in low energy fission of 235,233U(nth,f) and 252Cf(sf), EPJ Web Conf. 8 (2010) 03004, https://doi.org/10.1051/epjconf/20100803004.

A. Go¨ok, F.-J. Hambsch, S. Oberstedt, and M. Vidali, Prompt neutrons in correlation with fission fragments from U235 (n,f), Phys. Rev. C. 98 (2018) 044615, https://doi.org/10.1103/PhysRevC.98.044615.

C. Signarbieux, J. Poitou, M. Ribrag, and J. Matuszek, Correlation entre les energies d’excitation des deux fragments complementaires dans LA fission spontanee de 252Cf, Phys. Lett. B. 39 (1972) 503, https://doi.org/10.1016/0370-2693(72)90330-9.

R. L. Walsh and J. W. Boldeman, Fine structure in the neutron emission ν(A) from 252Cf spontaneous fission fragments, Nucl. Phys. A. 276 (1977) 189, https://doi.org/10.1016/0375-9474(77)90378-5.

V. P. Zakharova and D. Ryazanov, Neutron yields from spontanous fission of 252Cf, Sov. J. Nucl. Phys. 30 (1979) 19, [Sov. J. Nucl. Phys. 30 (1979) 19].

C. Budtz-Jørgensen and H.-H. Knitter, Simultaneous investigation of fission fragments and neutrons in 252Cf(SF), Nucl. Phys. A. 490 (1988) 307, https://doi.org/10.1016/0375-9474(88)90508-8.

V. N. Dushin et al., Facility for neutron multiplicity measurements in fission, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 516 (2004) 539, https://doi.org/10.1016/j.nima.2003.09.029.

V. F. Apalin, Y. N. Gritsyuk, I. E. Kutikov, V. I. Lebedev, and L. A. Mikaelian, Neutron emission from U233, U235 and Pu239 fission fragments, Nucl. Phys. 71 (1965) 553, https://doi.org/10.1016/0029-5582(65)90765-0.

K. Nishio, Y. Nakagome, I. Kanno, and I. Kimura, Measurement of Fragment Mass Dependent Kinetic Energy and Neutron Multiplicity for Thermal Neutron Induced Fission of Plutonium-239, J. Nucl. Sci. Technol. 32 (1995) 404, https://doi.org/10.1080/18811248.1995.9731725.

C. Tsuchiya et al., Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(nth, f),, J. Nucl. Sci. Technol. 37 (2000) 941, https://doi.org/10.1080/18811248.2000.9714976.

O. A. Batenkov et al., Prompt neutron emission in the neutroninduced fission of 239Pu and 235U, AIP Conference roceedings. 769 (2005) 1003, https://doi.org/10.1063/1.1945175.

M. Montoya, Behavior of the average prompt neutron multiplicity as a function of post-neutron fragment mass in correlation with the pre-neutron fragment mass distribution in thermal neutron induced fission of 235U and 233U, Results Phys. 14 (2019) 102356, https://doi.org/10.1016/j.rinp.2019.102356.

M. Montoya and C. Romero, Correlation between the average prompt neutron multiplicity as a function of the primary mass nd the corresponding experimental mass of fragments from 252Cf spontaneous fission, Results Phys. 15 (2019) 102685, https://doi.org/10.1016/j.rinp.2019.102685.

M. Montoya, Oversize of the average prompt neutron multiplicity measured by the 1V1E method in the symmetric region of thermal neutron-induced fission of 239Pu, Results Phys. 17 (2020) 103053, https://doi.org/10.1016/j.rinp.2020.103053.

A. Go¨ok, F.-J. Hambsch, and S. Oberstedt, Neutron Multi-plicity Correlations with Fission Fragment Mass and Energy from 239Pu(n, f), EPJ Web Conf. 239 (2020) 05009, https://doi.org/10.1051/epjconf/202023905009.

R. Vogt, J. Randrup, D. A. Brown, M. A. Descalle, and W. E. Ormand, Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n, f), Phys. Rev. C. 85 (2012) 024608, https://doi.org/10.1103/PhysRevC.85.024608.

M. Asghar, F. Ca¨ıtucoli, P. Perrin, and C. Wagemans, Fission fragment energy correlation measurements for the thermal neutron fission of 239Pu and 235U, Nucl. Physics, Sect. A. 311 (1978) 205, https://doi.org/10.1016/0375-9474(78)90510-9.

A. S. Vorobyev, Distribution of Prompt Neutron Emission Probability for Fission Fragments in Spontaneous Fission of 252Cf and 244,248Cm, AIP Conference Proceedings. 769 (2005) 613, https://doi.org/10.1063/1.1945084.

Downloads

Published

2022-01-01