Impressive and accurate solutions to the generalized Fokas-Lenells model

Authors

DOI:

https://doi.org/10.31349/RevMexFis.68.020701

Keywords:

The perturbed complex Fokas-Lenells model, the modified simple equation method, the Riccati-Bernoulli Sub-ODE method, the travelling wave solutions

Abstract

In this article, we utilize the generalized full nonlinearity perturbed complex Fokas-Lenells model (GFLM) which is a general dynamics representation of modern electronic communications "Internet blogs, Facebook communication and Twitter comments". The modified simple equation method (MSEM) has been applied effectively to generate closed form solution. On the other hand, the Riccati-Bernoulli Sub-ODE method (RPSOM) which reduces the steps of calculation has been applied perfectly to achieve accurate solution to this equation. We established the solutions achieved by these distinct manners in same vein and parallel.

Author Biography

Ahmet Bekir, Eskisehir

Ahmet Bekir currently works at Eskisehir. His research interests are theory and exact solutions of partial differential equations in mathematical physics. His favourites in mathematics are ODEs, PDEs, fractional differential equations, integral equations and analytic methods. He has published more than 200 articles journals.

References

A. Bekir, Application of the (G’/G)-expansion method for nonlinear evolution equations, Phys. Lett. A 372 (2008) 3400,

https://doi.org/10.1016/j.physleta.2008.01.057.

E. H. M. Zahran and M. M. A. Khater, Exact traveling wave solutions for the system of shallow water wave equations and

modified Liouville equation using extended Jacobian elliptic function expansion method. American Journal of Computational

Mathematics, 4 (2014) 455, https://doi.org/10.4236/ajcm.2014.45038.

A. M. Wazwaz, Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified

decomposition method, Chaos Solitons & Fractals, 12 (2001) 1549. https://doi.org/10.1016/S0960-0779(00)00133-8.

M. S. M. Shehata, H. Rezazadeh, E H. M. Zahran, E. Tala-Tebue, and A. Bekir, New Optical Soliton Solutions of the Perturbed Fokas-Lenells Equation, Commun. Theor. Phys. 71 (2019) 1275. https://doi.org/10.1088/0253-6102/71/11/1275.

M. M. A. Khater, D. Lu, and E. H. M. Zahran, Solitary wave solutions of the Benjamin-Bona-Mahoney-Burgers equation with

dual power-law nonlinearity. Appl. Math. Inf. Sci, 11 (2017) 1, http://dx.doi.org/10.18576/amis/paper.

X.-F. Yang, Z.-C. Deng, and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Advances in Difference Equations, 2015 (2015) 117. https://doi.org/10.1186/s13662-015-0452-4.

M. M. A. Khater, E. H. M. Zahran, and M. S. M. Shehata, Solitary wave solution of the generalized Hirota-Satsuma coupled KdV system, Journal of Egyptian Mathematical Society, 25 (2017) 8, https://doi.org/10.1016/j.joems.2016.04.006.

M. S. M. Shehata, The exp-Method and its Applications for Solving Some Nonlinear Evolution Equations in Mathematical

Physics. American Journal of Computational Mathematics 5 (2015) 468, http://dx.doi.org/10.4236/ajcm.2015.54041.

E. H. M. Zahran, TravelingWave Solutions of Nonlinear Evolution Equations via Modified exp-Expansion Method. Journal of

Computational and Theoretical Nanoscience, 12 (2015) 5716, https://doi.org/10.1166/jctn.2015.4707.

A. Biswas, M. Ekici, A. Sonmezoglu, and R.T. Alqahtani, Optical solitons with differential group delay for coupled Fokas-Lenells equation by extended trial function scheme. Optik , 165 (2018) 102, https://doi.org/10.1016/j.ijleo.2018.03.102

M. Eslami, and M. Mirzazadeh, First integral method to look for exact solutions of a variety of Boussinesq-like equations.

Ocean Engineering, 83 (2014) 133, https://doi.org/10.1016/j.oceaneng.2014.02.026

D. Kumar, A. R. Seadawy, and A. K. Joardare, Modified Kudryashov method via new exact solutions for some conformable

fractional differential equations arising in mathematical biology, Chinese Journal of Physics, 56 (2018) 75, https://doi.org/10.1016/j.cjph.2017.11.020g.

A. Biswas, 1-soliton solution of the K(m,n) equation with generalized evolution. Phys. Lett. A 372 (2008) 4601, https://doi.org/10.1016/j.physleta.2008.05.002

H. Triki and A.M. Wazwaz, Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients . Phys. Lett. A, 373 (2009) 2162. https://doi.org/10.1016/j.physleta.2009.04.029.

A. G Davodi, D. D Ganji, A. G Davodi, and A. Asgari, Finding general and explicit solutions (2+ 1) dimensional Broer-Kaup-Kupershmidt system nonlinear equation by exp-function method, Applied Mathematics and computation, 217 (2010) 1415. https://doi.org/10.1016/j.amc.2009.05.069.

G. Domairry, A. G. Davodi, and A. G. Davodi, Solutions for the double Sine-Gordon equation by Exp-function, Tanh, and

extended Tanh methods, Numerical Methods for Partial Differential Equations 26 (2010) 384. https://doi.org/10.1002/num.20440.

M. M. Alipour, G. Domairry, and A. G. Davodi, An application of exp-function method to approximate general and explicit

solutions for nonlinear Schr¨odinger equations, Numerical Methods for Partial Differential Equations, 27 (2011) 1016,

https://doi.org/10.1002/num.20566.

A. Asgari, D. D. Ganji, and A.G. Davodi, Extended tanh method and exp-function method and its application to (2+ 1)-

dimensional dispersive long wave nonlinear equations, Journal of the Applied Mathematics, Statistics and Informatics, 6

(2010) 61.

A. Biswas, M. Ekici, A. Sonmezoglu, and R. T. Alqahtani, Optical soliton perturbation with full nonlinearity for Fokas-Lenells equation. Optik, 165 (2018) 29, https://doi.org/10.1016/j.ijleo.2018.03.094.

A. Biswas et al., Optical solitons with differential group delay for coupled Fokas-Lenells equation using two integration

schemes. Optik, 165 (2018) 74, https://doi.org/10.1016/j.ijleo.2018.03.100

A Biswas et al., Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes.

Optik, 165 (2018) 288, https://doi.org/10.1016/j.ijleo.2018.03.132.

A.J.M. Jawad, A. Biswas, Q. Zhou, S.P. Moshokoa, and M. Belic, Optical soliton perturbation of Fokas-Lenells equation with two integration schemes. Optik 165 (2018) 111, https://doi.org/10.1016/j.ijleo.2018.03.104.

A.-M. Wazwaz, Bright and dark soliton solutions for a k(m, n) equation with t-dependent coefficients. Phys. Lett. A, 373 (2009) 2162.

A.-M. Wazwaz, Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear

Dyn. 83 (2016) 591, https://doi.org/10.1007/s11071-015-2349-x

A. Bansal, A. H. Kara, A. Biswas, S. P. Moshokoa, and M. Belic, Optical soliton perturbation, group invariants and conservation

laws of perturbed Fokas-Lenells equation, Chaos. Solitons and Fractals 114 (2018) 275. https://doi.org/10.1016/j.chaos.2018.06.030

B. Ghanbari and J. F G Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with beta-conformable time derivative, Rev. Mex. Fis 65 (2019) 503, https://doi.org/10.31349/revmexfis.65.503.

M. Senol, New Analytical Solutions of Fractional Symmetric Regularized-Long-Wave Equation, Rev. Mex. Fis. 66 (2020) 297, https://doi.org/10.31349/revmexfis.66.297

A. Cevikel and E. Aksoy, Soliton solutions of nonlinear fractional differential equations with its applications in mathematical

physics, Rev. Mex. Fis. 67 (2021) 422, http://dx.doi.org/10.31349/RevMexFis.67.422

S. Abbagari, A. Houwe, H. Rezazadeh, A. Bekir, and S. Y. Doka, Solitary wave solutions in two-core optical fibers with coupling-coefficient dispersion and Kerr nonlinearity, Rev. Mex. Fis. 67 (2021) 369, http://dx.doi.org/10.31349/RevMexFis.67.369.

Y. Gurefe, The generalized Kudryashov method for the nonlinear fractional partial differential equations with the betaderivative, Rev. Mex. Fis. 66 (2020) 771, https://doi.org/10.31349/RevMexFis.66.771.

M.A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria

Engineering Journal, 59 (2020) 2379, https://doi.org/10.1016/j.aej.2020.02.033.

M.A. Khan, Z. Hammouch, and D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math.

Model. Nat. Phenom. 14 (2019) 311. https://doi.org/10.1051/mmnp/2018074.Rev. Mex.

Downloads

Published

2022-03-01

How to Cite

[1]
A. Bekir, E. H. M. Zahran, and A. A. Gholami Davodi, “Impressive and accurate solutions to the generalized Fokas-Lenells model”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 020701 1–, Mar. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory