Predictive study of ferromagnetism and antiferromagnetism coexistence in Ba1-xGdxRuO3 induced by Gd-doping
DOI:
https://doi.org/10.31349/RevMexFis.67.061002Keywords:
Double perovskite, alloy, transition phases, GGA U SO, electromagnetic effectsAbstract
Some ferromagnetic alloys which adopt the perovskite or double-perovskite structure exhibit some remarkable properties, such as electromagnetic effects, charge and orbital ordering, i.e., dielectric and magnetoresistance effects in the same time. These phenomena are related to both electrical conductivity and spin orbit orientation. In order to optimize and explore the structural, magnetic and electronic properties of GdxBa1-xRuO3 alloy, we investigated here the first-principles calculations using the generalized gradient approximation (GGA+U+SO) as implemented in the Wien2K package. The concentration classification of GdxBa1-xRuO3 alloy with (x = 0, 0.125, 0.25, 0.5, 0.875, 1) is given. In this work, we have identified features such transition phases, spin ordered and charge conduction that enable a priori of both crystal structure and magnetic behavior prediction.
Our considerable GdxBa1-xRuO3 alloy is a half-metallic in the cubic phase, and, Mott insulator for x=0.875 and semiconductor for x=1 in the orthorhombic phase. The GdxBa1-xRuO3 alloy therefore undergoes a transition between a cubic phase and another orthorhombic at x = 0.5. It is clear that at this point our alloy (Gd0.5Ba0.5RuO3) is at the same time FM and AFM A-type, in another way, we can say that A-AFM and FM configurations coexist in our alloys. In the case of our GdxBa1-xRuO3 alloy, we can see that the total magnetic moment increases linearly with the concentrations "x" since it has passed from 15.99 μB for x = 0 to 39.95 μB for x = 0.5, this is valid in the cubic phase. That is related to a heavily magnetic moment of spin in the Ru atom which increases also linearly with increasing x, while the magnetic moment of Gd decreases slightly. In the orthorhombic phase, its value remains zero regardless of the concentration because we are in an antiferromagnetic (AF) configuration. The collaboration of the 3d-Ru and 2p-O states is suggested to play an important role for the ferromagnetism in the considered alloy. These orbitals were the most regular in the two bands respectively: the conduction band and the valence band in the two phases given here (cubic and orthorhombic). We also note the mixed collaboration of the states 3d-Ba. On the other hand, the contribution of 3d-Gd states was only effective in the band of conduction, at the time when that of the 4f-Gd states was noticed especially in the orthorhombic phase.
References
Y. Ueda, T. Nakajima, The A-site ordered manganese perovskite and its colossal magnetoresistance, Prog. Solid State Chem. 35 (2007) 397. https://doi.org/10.1016/j.progsolidstchem.2007.01.025
T. Giang Ho et al., Nanosized perovskite oxide NdFeO3 as material for a carbon-monoxide catalytic gas sensor, Adv. Nat. Sci. Nanosci. Nanotechnol 2 (2011) 15012. https://doi.org/10.1088/2043-6262/2/1/015012
Q.-L. Fang, J.-M. Zhang, K.-W. Xu, Vacancy and doping driven ferromagnetism in BaTiO3 perovskite, Phys. B Condens. Matter 424 (2013) 79. https://doi.org/10.1016/j.physb.2013.04.058
G. H. Jonker, J. H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica 16 (1950) 337, https://doi.org/10.1016/0031-8914(50)90033-4.
V. Y. Topolov, Effect of a tetragonal phase on heterophase states in perovskite-type ferroelectric solid solutions, Solid State
Commun. 170 (2013) 1, https://doi.org/10.1016/j.ssc.2013.07.008.
H. Ding et al., Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0:9Sb0:1O3¡± cubic perovskite cathode, J. Power Sources 185 (2008) 937, https://doi.org/10.1016/j.jpowsour.2008.07.042.
K. Page, T. Kolodiazhnyi, T. Proffen, A. K. Cheetham, R. Seshadri, Local Structural Origins of the Distinct Electronic Properties of Nb-Substituted SrTiO3 and BaTiO3, Phys. Rev. Lett. 101 (2008) 205502, https://doi.org/10.1103/PhysRevLett.101.205502.
J.-S. Zhou, J. B. Goodenough, Pressure-Induced Transition from Localized Electron Toward Band Antiferromagnetism in LaMnO3, Phys. Rev. Lett. 89 (2002) 087201, https://doi.org/10.1103/PhysRevLett.89.087201.
J. G. Zhao et al., Structural and physical properties of the 6H BaRuO3 polymorph synthesized under high pressure, J. Solid State Chem. 180 (2007) 2816, https://doi.org/10.1016/j.jssc.2007.07.031.
A. labdelli, Etude des propriét´es physiques des pérovskitesoxydes ABO3, (Presses Acad˜A°c miques Francophones, 2018) pp. 130-131.
T. Ogawa, H. Sato, New ternary barium ruthenates : 10H-type BaRuO3 and Ba2Ru7O18, J. Alloys Compd. 383 (2004) 313, https://doi.org/10.1016/j.jallcom.2004.04.035.
C. Felser, R. J. Cava, Electronic structure of two crystallographic forms of BaRuO3, Phys. Rev. B 61 (2000) 10005, https://doi.org/10.1103/PhysRevB.61.10005.
D.-M. Han, X.-J. Liu, S.-H. Lv, H.-P. Li, J. Meng, Elastic properties of cubic perovskite BaRuO3 from first-principles calculations, Phys. B Condens. Matter 405 (2010) 3117, https://doi.org/10.1016/j.physb.2010.04.025.
C.-Q. Jin et al., High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates, Proc. Natl. Acad. Sci. 105 (2008) 7115, https://doi.org/10.1073/pnas.0710928105.
A. Labdelli and H. Noura, Perovskite oxides MRuO3 (M = Sr, Ca and Ba) : Structural distortion, electronic and magnetic properties with GGA and GGA-modified Becke-Johnson approaches, Results Phys. 5 (2015) 38. https://doi.org/10.1016/j.rinp.2014.10.004
A. L. Sinclair, High pressure synthesis and study of ternary ruthenates (University of Edinburgh, 2013) pp. 115-168.
A. Labdelli, A. Boukortt, S. Meskine, H. Abbassa and A. Zaoui, Investigation of optoelectronic and thermoelectric properties of half-metallic BaRuO3 using DFT+U. Int. J. Comput. Mater. Sci. Eng. 7 (2018) 1850018, https://doi.org/10.1142/S2047684118500185.
A. Labdelli, S. Meskine, A. Boukortt, R. Khenata, Optoelectronic and magnetic properties of the ortho-perovskite GdRuO3 using DFT+U with spin-orbit coupling: predictive study, J. New Technol. Mater. 8 (2018) 126, https://doi.org/10.12816/0048932.
Y.-J. Song and K.-W. Lee, Effects of Magneto volume and Spin-orbit Coupling in the Ferromagnetic Cubic Perovskite BaRuO3, Journal of the Korean Physical Society 62 (2012)1869, https://doi.org/10.3938/jkps.62.1869.
Y. Shi et al., High-Pressure Synthesis of 5d Cubic Perovskite BaOsO3 at 17 GPa: Ferromagnetic Evolution over 3d to 5d Series, Journal of the American Chemical Society 135 (2013) 16507. https://doi.org/10.1021/JA4074408.
E. L. Rautama et al., Cationic Ordering and Microstructural Effects in the Ferromagnetic Perovskite La0.5Ba0.5CoO3: Impact upon Magnetotransport Properties, Chemistry of Materials, 20 (2008) 2742. https://arxiv.org/abs/0802.3984v1.
J. G. Cheng, J. S. Zhou, and J. B. Goodenough, Lattice effects on ferromagnetism in perovskite ruthenates, Proceedings of the National Academy of Sciences of the United States of America, 110 (2013) 13312.https://doi.org/10.1073/PNAS.1311871110.
Y. Kobayashi, T. Kaneko, and K. Asai, Magnetic and transport properties in Ba1¡xSrxRuO3 single crystals. J. Phys. Conf. Ser. 200 (2010) 012091, https://iopscience.iop.org/article/10.1088/1742-6596/200/1/012091.
Y. Kobayashi, M. Iwata, T. Kaneko, K. Sato, and K. Asai, Extraordinary Hall effect in Ba1¡xSrxRuO3 J. Phys. Conf. Ser. 200 (2010) 012090, https://doi.org/10.1088/1742-6596/200/1/012090.
S. Xu, Y. Gu, and X. Wu, Ferromagnetism and antiferromagnetism coexistence in Sr1¡xLaxRuO3 induced by La-doping, Solid State Commun. 270 (2018) 119, https://doi.org/10.1016/j.ssc.2017.11.017.
P. Blaha et al., Wien2k, an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna university of technology, Austria, 2018)
E. Sj¨ostedt, L. Nordstr¨om, and D. Singh, An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114 (2000) 15. https://doi.org/10.1016/S0038-1098(99)00577-3
G. K. H. Madsen, P. Nov´ak, Charge order in magnetite. An LDA+ U study, Europhys. Lett. 69 (2005) 777, https://doi.org/10.1209/epl/i2004-10416-x.
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44 (1991) 943, https://doi.org/10.1103/PhysRevB.44.943.
H.J. Monkhorst, J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B 13 (1976) 5188, http://dx.doi.org/10.1103/PhysRevB.13.5188.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 ABBES LABDELLI, N. Hamdad
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.