An Eigenvalue Analysis of Damping in Optical Thin Plasmas

Authors

  • J. Fajardo
  • Pedro L. Contreras Universidad de Los Andes
  • M. H. Ibañez S.

DOI:

https://doi.org/10.31349/RevMexFis.67.061502

Keywords:

Thin optical plasmas, magnetosonic waves, Alfven waves, thermal waves, magnetic diffusion, astrophysical plasmas

Abstract

In this work, the behaviour of magneto-hydrodynamic waves in optically thin plasmas considering dissipative processes, thermal and magnetic diffusion, a given ionization, and the heating and cooling functions are investigated for several particular cases. A numerical eigenvalues analysis of the dimensionless secular equations according to various cases is performed for the entire set of MHD equations.

References

T. J. Dennis and B. D. G. Chandran, Turbulent Heating of Galaxy-Cluster Plasmas, Astrophys. J 622 (2005) 205, https://doi.org/10.1086/427424.

A. Burkert, The turbulent interstellar medium, C. R. Phys. 7 (2006) 433, https://doi.org/10.1016/j.crhy.2006.05.001.

P. Hennebelle and T. Passot, Influence of Alfv´en waves on thermal instability in the interstellar medium, Astron. Astro-phys. 448 (2006) 1083, https://doi.org/10.1051/0004-6361:20053510.

L. Pan and P. Padoan, The temperature of interstellar clouds from turbulent heating, Astrophys. J. 692 (2009) 594, https:

//doi.org/10.1088/0004-637X/692/1/594.

H. Braun and W. Schmidt, A semi-analytic model of the turbulent multi-phase interstellar medium, Mon. Not. R. Astron. Soc. 421 (2012) 1838, https://doi.org/10.1111/j.1365-2966.2011.19889.x.

E. Parker, Cosmical magnetic fields: Their origin and their activity, (Clarendon Press, Oxford, 1979).

C. Heiles and T. H. Troland, The Millenium Arecibo 21 Centimeter Absorption-Line Survey IV: Statistics of Magnetic Field, Column Density, and Turbulence, Astrophys. J. 624 (2005) 773, https://doi.org/10.1086/428896.

W. H. Kegel and G. Traving, On the Jeans Instability in the Steady State Interstellar Gas, Astron. Astrophys. 50 (1976) 137.

R. Kippenhahn and A. Weigert, Stellar Structure and Evolution (Springer, Heidelberg, 1990).

M. H. Ib´a˜nez S., Sound and thermal waves in a fluid with an arbitrary heatloss function, Astrophys. J. 290 (1985) 33, https://doi.org/10.1086/162957.

M. H. Ib´a˜nez S. and N. M. S´anchez D., Propagation of Sound and Thermal Waves in a Plasma with Solar Abundances, Astrophys. J. 396 (1992) 717, https://doi.org/10.1086/171754.

M. H. Ib´a˜nez S. and O. B. Escalona T., Propagation of Hydrodynamic Waves in Optically Thin Plasmas, Astrophys. J. 415 (1993) 335, https://doi.org/10.1086/173167.

R. B. Dahlburg and J. T. Mariska, Influence of heating rate on the condensational instability, Sol. Phys. 117 (1988) 51, https://doi.org/10.1007/BF00148571.

G. B. Field, Thermal Instability, Astrophys. J. 142 (1965) 531, https://doi.org/10.1086/148317.

D. Giaretta, Polynomial Dispersion Relations, Astron. Astrophys. 75 (1979) 273.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 1st ed. (Pergamon Press, Oxford, 1960).

D. Mihalas, Stellar Atmospheres, 2nd ed. (Freeman & Co., San Francisco, 1978).

R. Rosner, W. H. Tucker and G. S. Vaiana, Dynamics of the quiescent solar corona, Astrophys. J. 220 (1978) 643, https://doi.org/10.1086/155949.

L. Spitzer, Physics of Fully Ionized Gases (Interscience Publishers, New York, 1962).

T. H. Stix, Waves in Plasmas (Springer, Berlin, 1992).

J. T. Mariska, The Quiet Solar Transition Region, Annu. Rev. Astron. Astrophys. 24 (1986) 23, https://doi.org/10.1146/annurev.aa.24.090186.000323.

J. F. Vesecky, S. K. Antiochos, and J. H. Underwood, Numerical modeling of quasi-static coronal loops I: Uniform energy

input, Astrophys. J. 233 (1979) 987, https://doi.org/10.1086/157462.

N. Kumar and P. Kumar, Viscous Damping of Non-Adiabatic MHD Waves in an Unbounded Solar Coronal Plasma, Sol. Phys. 236 (2006) 137, https://doi.org/10.1007/s11207-006-0128-z.

B. Roberts, Waves and Oscillations in the Corona, Sol. Phys. 193 (2000) 139, https://doi.org/10.1023/A:1005237109398.

M. H. Iba nez S., Damping of sound waves propagating in optically thin plasmas, Phys. Plasmas 11 (2004) 5190, https:

//doi.org/10.1063/1.1792633.

D. W. Goldsmith, Thermal Instabilities in Interstellar Gas Heated by Cosmic Rays, Astrophys. J. 161 (1970) 41, https://doi.org/10.1086/150511.

C. F. McKee and J. P. Ostriker, A theory of the interstellar medium: three components regulated by supernova explosions

in an inhomogeneous substrate, Astrophys. J. 218 (1977) 148, https://doi.org/10.1086/155667.

J. Fajardo, M.Sc. thesis, 2016.

E. N. Parker, Instability of Thermal Fields, Astrophys. J. 117 (1953) 431, https://doi.org/10.1086/145707.

S. I. Braginskii, Transport Processes in a Plasma, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants

Bureau, New York, 1965), Vol. 1.

M. H. Ib´a˜nez S., Entropy-vortex waves in non-adiabatic flows, Astrophys. J. 818 (2016) 119, https://doi.org/10.3847/0004-637X/818/2/119.

M. H. Ib´a˜nez S., The stability of optically thin reacting plasmas: effects of the bulk viscosity, Astrophys. J. 695 (2009) 479, https://doi.org/10.1088/0004-637X/695/1/479.

M. H. Ib´a˜nez S. and L. A. N´u˜nez, On the Vortex Waves in Nonadiabatic Flows, Astrophys. J. 855 (2018) 19, https://doi.org/10.3847/1538-4357/aaaa22.

M. H. Ib´a˜nez S. and S. M. Conde, Heating of a Recombining Plasma by Bulk Viscosity Dissipation of Sound Waves, Rev. Mex. Astron. Astrofis. Ser. Conf. 40 (2011) 188.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon Press, Oxford, 1987).

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981).

S. Conde, M. Sc. thesis, Universidad de Los Andes, 2010.

M. H. Ib´a˜nez and P. L. Contreras, Damping of SoundWaves by Bulk Viscosity in Reacting Gases, Can. J. Pure Appl. Sci. 13 (2019) 4897.

Downloads

Published

2021-11-01

How to Cite

[1]
J. Fajardo, P. L. Contreras, and M. H. Ibañez S., “An Eigenvalue Analysis of Damping in Optical Thin Plasmas”, Rev. Mex. Fís., vol. 67, no. 6 Nov-Dec, pp. 061502 1–, Nov. 2021.