On the London superconductors and mesoscopic RLC circuits

Authors

  • Inácio de Almeida Pedrosa
  • L. Nascimento

DOI:

https://doi.org/10.31349/RevMexFis.68.010501

Keywords:

London superconductor; RLC circuit; London equations; Invariant method; Coherent states

Abstract

We investigate the connection between the London superconductor and a mesoscopic RLC circuit in both classical and quantum contexts. We show that mathematical framework to describe the dynamics of these two dierent systems is identical. Based on the Lewis-Riesenfeld invariant method together with the Fock states, we solve the time-dependent Schrodinger equation for this problem and evaluate some of its important physical properties, such as coherent states, expectation values of the charge and magnetic ux, their quantum uctuations and the corresponding uncertainty principle.

References

X.-G. Meng, J.-S. Wang and B.-L. Liang, Quantum theory of a mutual-inductance-coupled LC circuit including Josephson junctios studied via the entangled state representation, Solid State Commun. 149 (2009) 2027, https://doi.org/10.1016/j.ssc.2009.08.028.

J.-S. Wang, B.-L. Liang and H.-Y. Fan, Operator Josephson equation for a Josephson junction connected into a mesoscopic LC circuit, Mod. Phys. Lett. B 22 (2008) 3171, https://doi.org/10.1142/S0217984908017692.

L. M. K. Vandersypen et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414 (2001) 883, https://doi.org/10.1038/414883a.

S. Gulde et al., Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer, Nature 421 (2003) 48,

https://doi.org/10.1038/nature01336.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Measurement of Conditional Phase Shifts for Quantum

Logic, Phys. Rev. Lett. 75 (1995) 4710, https://doi.org/10.1103/PhysRevLett.75.4710.

X. -G. Meng, J. -S. Wang and B. -L. Liang, Modified Josephson equations for the mesoscopic LC circuit including two coupled

Josephson juctions, J. Phys. A: Math. Theo. 41 (2008) 235208, https://doi.org/10.1088/1751-8113/41/23/235208.

D. M. Ginsberg, The Impact of the BCS Theory of Superconductivity, J. of Superconductivity, 4 (1991) 321, https://doi.org/10.1007/BF00618211.

H. Kaur, H. Kaur, and A. Sharma, A review of recent advancement in superconductors, Materials today: Proceedings 37 (2021) 3612, https://doi.org/10.1016/j.matpr.2020.09.771.

J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108 (1957) 1175, https://doi.org/10.1103/PhysRev.108.1175.

H. K. Onnes, Further experiments with liquid helium. H. On the electrical resistance of pure metals etc. VII. The potential

difference necessary for the electric current through mercury below 4±.19 K, in Through Measurement to Knowledge, edited by K. Gavroglu and Y. Goudaroulis, Vol. 124 (Springer, Dordrecht, 1991), https://doi.org/10.1007/978-94-009-2079-8-18.

W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitf¨ahigkeit, Naturwiss 21 (1933) 783, https://doi.org/10.1007/BF01504252.

F. London and H. London, The Electromagnetic Equations of the Supraconductor, Proc. Roy. Soc. Lond. A 149 (1935) 71, https://doi.org/10.1098/rspa.1935.0048.

V. L. Ginzburg and L. D. Landau, On the Theory of Superconductivity, On Superconductivity and Superfluidity (Springer,

Berlin-Heidelberg, 2009), htts://doi.org/10.1007/978-3-540-68008-6-4.

R. D. Parks, Quantized Magnetic Flux in Superconductors, Science,146 (1964) 1429, DOI: 10.1126/science.146.3650.1429.

B. D. Josephson, Possible new effects in superconductive tunnelling, Phys. Lett. 1 (1962) 251, htts://doi.org/10.1016/0031-9163(62)91369-0.

F. London, Superfluids, (Dover Publications, New York, 1961), 2nd ed., pp. 27-91.

I. A. Pedrosa and A.P. Pinheiro, Quantum Description of a Mesoscopic RLC Circuit, Prog. Theo. Phys. 125 (2011) 1133, https://doi.org/10.1143/PTP.125.1133.

M. A. Kastner, The single-electron transistor, Rev. Mod. Phys. 64 (1992) 849, https://doi.org/10.1103/RevModPhys.64.849.

J. R. Choi, Quantization of underdamped, critically damped, and overdamped electric circuits with a power source, Int. J. Theo. Phys. 41 (2002) 1931, https://doi.org/10.1023/A:1021056924059.

J. R. Choi, Exact solution of a quantized LC circuit coupled to a power source, Phys. Scr. 73 (2006) 587, https://doi.org/10.1088/0031-8949/73/6/010.

B.-L. Liang, J.-S. Wang and X.-G. Meng, Quantization for the mesoscopic RLC circuit and its thermal effect by virtue of GHFT, Mod. Phys. Lett. B 23 (2009) 3621, https://doi.org/10.1142/S0217984909021661.

I. A. Pedrosa, J. L. Melo and E. Nogueira Jr., Linear invariants and the quantum dynamics of a nonstationary mesoscopic RLC

circuit with a source, Mod. Phys. Lett. B 28 (2014) 1450212, https://doi.org/10.1142/S0217984914502121.

I. A. Pedrosa, J. L. Melo and S. Salatiel, Quantization, coherent states and geometric phases of a generalized nonstationary

mesoscopic RLC circuit, Eur. Phys. J. B 87 (2014) 269, https://doi.org/10.1140/epjb/e2014-50174-5.

W. H. Louisell, Quantum Statistical Properties of Radiation, (John Wiley, New York, 1st ed, 1973),pp. 230-235

H. M. Luo, L. and X. Q. Ke, Thermodynamics of squeezed state for mesoscopic RLC circuits, Int. J. Theor. Phys. 46 (2007) 2935, https://doi.org/10.1007/s10773-007-9406-2.

D. Xu, Hannay angle in an LCR circuit with timedependent inductance, capacity and resistance, J. Phys. A: Math. Gen. 35 (2002) L455, htts://doi.org/10.1088/0305-4470/35/29/104.

L. F. Wei and X. L. Lei, Dynamics for a Mesoscopic RLC Circuit with a Source, Phys. Scripta 62 (2000) 7, https://doi.org/10.1238/Physica.Regular.062a00007.

Z.-M. Zhang, L.-S. He and S.-K. Zhou, A quantum theory of an RLC circuit with a source, Phys. Lett. A 244, (1998), 196, https://doi.org/10.1016/S0375-9601(98)00295-3.

H. R., Lewis Jr. and W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged

particle in a time-dependent electromagnetic field, J. Math. Phys. 10 (1969) 1458, https://doi.org/10.1063/1.1664991.

M. Maamache, J. -P. Provost and G. Vall´ee, Unitary equivalence and phase properties of the quantum parametric and generalized harmonic oscillators, Phys. Rev. A, 59 (1999) 1777, https://doi.org/10.1103/PhysRevA.59.1777.

P. Caldirola, Quantum theory of nonconservative systems, Nuovo Cimento, 77 (1983) 241, https://doi.org/10.1007/BF02721487.

E. Kanai, Prog. On the quantization of the dissipative systems, Prog. Theor. Phys. 3 (1948) 440, https://doi.org/10.1143/ptp/3.4.440.

I. A. Pedrosa, G. P. Serra and I. Guedes, Wave functions of a time-dependent harmonic oscillator with and without a singular

perturbation, Phys. Rev. A 56 (1997) 4300, https://doi.org/10.1103/PhysRevA.56.4300.

R. W. Hasse, On the quantum mechanical treatment of dissipative systems, J. Math. Phys. 16 (1975) 2005, https://doi.org/10.1063/1.522431.

J. R. Choi, Coherent and squeezed states for light in homogeneous conducting linear media by an invariant operator method,

Int. J. Theo. Phys. 43 (2004) 2113, https://doi.org/10.1023/B:IJTP.0000049014.09671.e2.

J. R. Choi, Quantum description of the electromagnetic waves in homogeneous conducting linear media, J. Opt. B 5 (2003) 409, https://doi.org/10.1088/1464-4266/5/5/006.

A. L. de Lima, A. Rosas and I. A. Pedrosa, On the quantization of the electromagnetic field in conducting media, J. Modern. Opt. 56 (2009) 59, https://doi.org/10.1080/09500340802428348.

I. A. Pedrosa, Quantum Light and Coherent States in Conducting Media, J. Appl. Math. Phys. 8 (2020) 2475, https://doi.org/10.4236/jamp.2020.811183.

I. A. Pedrosa, Quantum electromagnetic waves in nonstationary linear media, Phys. Rev. A 83 (2011) 032108, https://doi.org/10.1103/PhysRevA.83.032108.

W. E. Milne, The numerical determination of characteristic numbers, Phys. Rev. D 35 (1930) 863, https://doi.org/10.1103/PhysRev.35.863.

W. K. Schief, A discrete Pinney equation, Appl. Math. Lett. 10 (1997) 13, https://doi.org/10.1016/S0893-9659(97)00026-8.

J. G. Hartley and J. R. Ray, Coherent states for the timedependent harmonic oscillator, Phys. Rev. D 25 (1982) 382, https://doi.org/10.1103/PhysRevD.25.382.

M. M. Nieto and L. M. Simmons Jr., Coherent states for general potentials. I. Formalism Phys. Rev. D 20 (1979) 1321, https://doi.org/10.1103/PhysRevD.20.1321.

H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A 13 (1976) 2226, https://doi.org/10.1103/PhysRevA.13.2226.

D. Stoler, Equivalence Classes of Minimum Uncertainty Packets. Phys. Rev. D, 1 (1970) 3217, https://doi.org/10.1103/PhysRevD.1.3217.

I. A. Pedrosa, Comment on ”Coherent states for the timedependent harmonic oscillator”, Phys. Rev. D 36 (1987) 1279,

https://doi.org/10.1103/PhysRevD.36.1279.

D. F. Walls, Squeezed states of light, Nature 306 (1983) 141, https://doi.org/10.1038/306141a0.

I. A. Pedrosa and L. Nascimento, London superconductor and time-varying mesoscopic LC circuits, Rev. Mex. Fis. to be published.

V. Aguiar, J. P. G. Nascimento, I. Guedes, and R. N. Costa Filho, London superconductivity approach in a time-dependent

background, Physica C 580 (2021) 1353783, htts://doi.org/10.1016/j.physc.2020.1353783.

Downloads

Published

2022-01-01

How to Cite

[1]
I. de A. Pedrosa and L. Nascimento, “On the London superconductors and mesoscopic RLC circuits”, Rev. Mex. Fís., vol. 68, no. 1 Jan-Feb, pp. 010501 1–, Jan. 2022.