Elastic constants, electronic properties and thermoelectric response of LiAlX (X=C, Si, Ge, And Sn) half-Heusler

Authors

  • ROZALE HABIB Condensed matter and sustainable development Laboratory MDD Department, Faculty of Science, University of Sidi-Bel-Abbes, Sidi-Bel-Abbes, 22000-Algeria
  • M. Khetir University of Sidi Bel- Abbes
  • A. Maafa University of Sidi Bel- Abbes
  • F. Boukabrime University of Sidi Bel- Abbes
  • A. Bouabça University of Sidi Bel- Abbes
  • A. Chahed University of Sidi Bel- Abbes

DOI:

https://doi.org/10.31349/RevMexFis.68.011002

Keywords:

Lithium-based alloys, DFT, FPLAPW, Elastic constants, electronic properties, thermoelectric response

Abstract

Since they have become indispensable in various technological applications and a powerful
source for generating energy in thermoelectric devices, Lithium-based alloys symbolize the topic
of many experimental and theoretical reports. Hence, LiAlX(X = C, Si, Ge, Sn) materials represent
the main research in this study. Different interesting properties such as the effect of pressure on
the band gap as well as the elastic parameters and the thermoelectric efficiency of these materials
were investigated using the full potential linearized augmented plane wave (FP-LAPW) method.
LiAlX alloys were found to be semiconducting with indirect band gaps. When studying the
mechanical properties, we found that LiAlC alloy is stable against a wide range of pressure
changes (90 GPa), while the rest three systems preserve their mechanical stability in a moderate
respectively range of 40, 50 and 30 GPa, respectively. The semiconducting band gap for each
possible transition have been calculated in a range of different pressures using both GGA and
mBJ-GGA approximations. The results ended up revealing a decaying trend of the indirect gap
along Г-X direction with the increase of pressure. High values of the power factor were achieved
and a large figure of merit (almost 0.7 for all systems) was calculated at 600K, which makes
these Li-based alloys very auspicious in the thermoelectric field applications.

References

R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, New Class of Materials: Half-Metallic Ferromagnets, Phys. Rev. Lett. 50 (1983) 2024, https://doi.org/10.1103/PhysRevLett.50.2024.

H. Mehnane et al., First-principles study of new half Heusler for optoelectronic applications. Superlattices and Microstructures 51 (2012) 772, https://doi.org/10.1016/j.spmi.2012.03.020.

D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-IIV half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81 (2010) 075208, https://doi.org/10.1103/PhysRevB.81.075208.

T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications, Phys. Rev. B 82 (2010) 125210, https://doi.org/10.1103/PhysRevB.82.125210.

F. Shi et al., Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors, J. Appl. Phys. 122 (2017) 215701 https://doi.org/10.1063/1.4998145.

R. Zhang et al., Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin-orbit effect, J. Appl. Phys. 122 (2017) 013901 https://doi.org/10.1063/1.4989989.

F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications, Semicond. Sci. Technol. 27 (2012) 063001. https://doi.org/10.1088/0268-1242/27/6/063001.

X. Hu, Half-Metallic Antiferromagnet as a Prospective Material for Spintronics, Adv. Mater. 24 (2011) 294, https://doi.org/10.1002/adma.201102555.

J.-W.G. Bos and R.A Downie, Half-Heusler thermoelectrics: a complex class of materials, J. Phys. Condens. Matter 26 (2014) 433201, https://doi.org/10.1088/0953-8984/26/43/433201.

C. Felser and A. Hirohata, Heusler Alloys (Springer, Cham, 2016), https://doi.org/10.1007/978-3-319-21449-8.

A. Erkisi, G. Surucu, and R. Ellialtioglu, The investigation of electronic, mechanical and lattice dynamical properties of PdCoX (X=Si and Ge) half-Heusler metallics in α, β and γ structural phases: an ab initio study, Phil. Mag 97 (2017) 2237, https://doi.org/10.1080/14786435.2017.1329595.

W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133 https://doi.org/10.1103/PhysRev.140.A1133.

N. Belmiloud, F. Boutaiba, A. Belabbes, M. Ferhat, and F. Bechstedt, Half-Heusler compounds with a 1 eV (1.7 eV) direct band gap, lattice-matched to GaAs (Si), for solar cell application: A first-principles study, Phys. Status Solidi B 253 (2016) 889. https://doi.org/10.1002/pssb.201552674.

S. Yousuf and D.C. Gupta, Thermoelectric response of ZrNiSn and ZrNiPb Half-Heuslers: Applicability of semiclassical Boltzmann transport theory, Results Phys 12 (2019) 1382. https://doi.org/10.1016/j.rinp.2019.01.026.

D.J. Singh and L. Nordstrom, Planwaves, ¨ Pseudopotential and the LAPW Method, (Springer, Boston 1994). https://doi.org/10.1007/978-0-387-29684-5.

M. Weinert, E. Wimmer, and A. Freeman, Total-energy allelectron density functional method for bulk solids and surfaces, Phys. Rev. B 26 (1982) 4571. https://doi.org/10.1103/PhysRevB.26.4571.

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Freeman A Full-potential self-consistent linearized-augmentedplane wave method for calculating the electronic structure of molecules and surfaces: O2 molecule, Phys. Rev. B 24 (1981) 864. https://doi.org/10.1103/PhysRevB.24.864.

P. Blaha et al., WIEN2K: An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, 2001.

J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244. https://doi.org/10.1103/PhysRevB.45.13244.

J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

A.D. Becke and E.R. Johnson, A simple effective potential for exchange, J. Chem. Phys 124 (2006) 221101. https://doi.org/10.1063/1.2213970.

F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. U. S. A 30 (1944) 244. https://doi.org/10.1073/pnas.30.9.244.

S.A. Sofi and D.C. Gupta, High temperature and pressure dependent structural and thermophysical properties of Co2VN (N = Sn, Sb) ferromagnetic materials, Mater. Res. Express 7 (2020) 125701, https://doi.org/10.1088/2053-1591/abcfde.

T. Charpin, A package for calculating elastic tensors of cubic phases using WIEN, Laboratory of Geomaterials IPGP, 2001.

G.K.H. Madsen and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006) 67, https://doi.org/10.1016/j.cpc.2006.03.007.

H. Nowotny and F. Holub, Untersuchungen an metallischen Systemen mit Fluβspatphasen. Monatsh. Chem. 91 (1960) 877. https://doi.org/10.1007/BF00929560.

S. H. Shah, S. H. Khan, A. Laref, and Murtaza, Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors, J. Solid State Chem. 258 (2018) 800, https://doi.org/10.1016/j.jssc.2017.12.014.

M. Born and K. Huang, Dynamical Theory of Crystal Lattices, (Clarendon Press, Oxford, 1954).

N. Erum and M. A. Iqbal, Effect of hydrostatic pressure on physical properties of strontium based fluoroperovskites for novel applications, Mater. Res. Express 5 (2018) 025904, https://doi.org/10.1088/2053-1591/aaad5c.

O. Gomis et al., High-pressure structural and elastic properties of Tl2O3, J. Appl. Phys 116 (2014) 133521 https://doi.org/10.1088/2053-1591/aaad5c.

S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954) 823, https://doi.org/10.1080/14786440808520496.

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A. 65 (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307.

P. Mao, B. Yu, Z. Liu, F. Wang, and Y. Ju, First-principles investigation on mechanical, electronic, and thermodynamic properties of Mg2Sr under high pressure, J. Appl. Phys 117 (2015) 115903, https://doi.org/10.1063/1.4915339.

C. M. Zener and S. Zener, Elasticity and anelasticity of metals. J. Phys. Chem. 53 (1949) 1468, https://doi.org/10.1021/j150474a017.

S. Kacimi, H. Mehnane, and A. Zaoui, I-II-V and I-III-IV halfHeusler compounds for optoelectronic applications: Comparative ab initio study, J. Alloys Compd. 587 (2014) 451 https://doi.org/10.1016/j.jallcom.2013.10.046.

R.P. Chasmar and R. Stratton, The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators, J. Electron. Control, 7 (1959) 52. https://doi.org/10.1080/00207215908937186.

J. W. F. Dorleijn, Electrical conduction in ferromagnetic metals, Philips Res. Rep. 31 (1976) 287.

Downloads

Published

2022-01-01

How to Cite

[1]
R. HABIB, M. Khetir, A. Maafa, F. Boukabrime, A. Bouabça, and A. Chahed, “Elastic constants, electronic properties and thermoelectric response of LiAlX (X=C, Si, Ge, And Sn) half-Heusler”, Rev. Mex. Fís., vol. 68, no. 1 Jan-Feb, pp. 011002 1–, Jan. 2022.