Diatomic molecules and fermionic particles with improved Hellmann-generalized Morse potential through the solutions of the deformed Klein-Gordon, Dirac and Schrödinger equations in extended relativistic quantum mechanics and extended nonrelativistic quantum mechanics symmetries
DOI:
https://doi.org/10.31349/RevMexFis.68.020801Keywords:
Klein-Gordon equation, Schrödinger equation, Morse potential, Hellmann potential, the diatomic molecules; Noncommutative geometry; star products; Bopp's shift methodAbstract
In this paper, we investigate the new approximate bound state solution of deformed Klein--Gordon, Dirac and Schr\"{o}dinger equations in the symmetries of extended relativistic quantum mechanics ERQM and extended nonrelativistic quantum mechanics ENRQM have been obtained with a newly proposed potential called improved Hellmann-generalized Morse potential (IHGMP, for short). To the best of our knowledge, this problem is examined in literature in the usual RQM and NRQM with Hellmann-generalized Morse potential. The potential is a superposition of Hellmann potential, generalized Morse or Deng-Fan potential, and some other exponential terms. By employing the improved approximation to deal with the centrifugal term, Bopp's shift and standard perturbation theory method. The new approximate analytical energy shift and the corrections of bound state energy
eigenvalues in ERQM and ENRQM are obtained for some selected diatomic molecules such as (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF). The new values that we get appeared sensitive to the quantum numbers $% \left( j,l,s,m\right) $, the potential depths of the improved Hellmann-generalized Morse potential ($a,b$), the range of the potential $%\alpha $, the dissociation energy $D_{e}$, the equilibrium bond length $%r_{e} $, and noncommutativity parameters$\left( \Theta ,\sigma ,\chi \right)$ . We have highlighted three physical phenomena that automatically generate a result of the topological properties of noncommutativity, the first physical phenomena are the perturbative spin-orbit coupling, the second the magnetic induction while the third corresponds to the rotational proper phenomena. In both relativistic and nonrelativistic problems, we show that
the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of quantum field theory and quantum mechanics. In the new symmetries of NCQM, it is not possible to get the exact analytical solutions for $l=0$ and $l\neq 0$, the approximate solutions are available. Four special cases, i.e., l wave are investigated in the context of deformed Klien-Gordon and Schr\"{o}dinger theories. The relativistic energy equations and the new nonrelativistic energy for some potentials such as improved Hellmann potential and improved generalized Morse potential have also been obtained by varying some potential parameters. We have clearly shown that the Schr\"{o}dinger and Klein Gordon equations in the new symmetries can
physically describe each of the two Dirac equations and the Duffin--Kemmer equation under the effect of IHGMP.
References
E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Phys. Rev. 28 (1926) 1049, https://doi.org/10.1103/PhysRev.28.1049.
O. Klein, Quantentheorie und funfdimensionale Relativitatstheorie, Z. Physik 37 (1926) 895, https://doi.org/10.1007/BF01397481
W. Gordon, Der Comptoneffekt nach der Schrödingerschen Theorie, Z. Physik 40 (1926) 117, https://doi.org/10.1007/BF01390840
N. Kemmer, The Particle Aspect of Meson Theory, Proc. R. Soc. Lond. A 173 (1939) 91, https://doi.org/10.1098/rspa.1939.0131.
P.A.M. Dirac, The Quantum Theory of the Electron, Proc. R. Soc. Lond. A 117 (1928) 610, https://doi.org/10.1098/rspa.1928.0023.
H. Hellmann, A combined approximation procedure for calculation of energies in the problem of many electrons, Acta Physicochim, U.R.S.S. 1 (1935) 913; ibid. 4 (1936) 225; 4 (1936) 324.
H. Hellmann, A New Approximation Method in the Problem of Many Electrons, J. Chem. Phys. 3 (1935) 61, https://doi.org/10.1063/1.1749559.
H. Hellmann and W. Kassatotchkin, Metallic Binding According to the Combined Approximation Procedure, J. Chem. Phys. 4 (1936) 324, https://doi.org/10.1063/1.1749851.
H. Yukawa, On the interaction of elementary particles I, Proc. Phys. Math. Soc. Japan 17 (1935) 48, https://doi.org/10.11429/ppmsj1919.17.0 48.
S.M. Ikhdair and R. Sever, A perturbative treatment for the bound states of the Hellmann potential, J. Mol. Struct. 809 (2007) 103, https://doi.org/10.1016/j.theochem.2007.01.019.
G. Kocak, O. Bayrad and I. Boztosum, Arbitrary l-state solutions of the Hellmann potential, J. Theor. Comput. Chem. 06 (2007) 893, https://doi.org/10.1142/S0219633607003313.
S.M. Ikhdair, and B.J. Falaye. Two Approximate Analytic Eigensolutions of the Hellmann Potential with any Arbitrary Angular Momentum, Z. Naturforsch. A 68 (2013) 701, https://doi.org/10.5560/zna.2013-0054
J.C. Philips, and L. Kleinmann, New Method for Calculating Wave Functions in Crystals and Molecules, Phys. Rev. A 116 (1959) 287; https://doi.org/10.1103/PhysRev. 116.287; L. Kleinman and J. C. Phillips, Crystal Potential and Energy Bands of Semiconductors. III. Self-Consistent Calculations for Silicon, Phys. Rev. 118 (1960) 1153, https://doi.org/10.1103/PhysRev.118.1153.
A.J. Hughes, and J. Callaway, Energy Bands in Body-Centered and Hexagonal Sodium, Phys. Rev. A 136 (1964) A1390, https://doi.org/10.1103/PhysRev.136.A1390
Y.P. Varshni, and R.C. Shukla, Alkali Hydride Molecules: Potential Energy Curves and the Nature of their Binding, Rev. Mod. Phys. 35 (1963) 130, https://doi.org/10.1103/RevModPhys.35.130.
J.N. Das, and S. Chakraborty, Atomic inner-shell ionization, Phys. Rev. A 32 (1985) 176, https://doi.org/10.1103/PhysRevA.32.176.
M. Mousavi and M.R. Shojaei, Mirror Nuclei of 17O and 17F in Relativistic and Nonrelativistic Shell Model, Adv. High Energy Phys. 2017 (2017) 5841701, https://doi.org/10.1155/2017/5841701.
M. Hamzavi, K.E. Thylwe, and A.A. Rajabi, Approximate Bound States Solution of the Hellmann Potential. Commun. Theor. Phys. 60 (2013) 1, https://doi.org/10.1088/0253-6102/60/1/01.
C.A. Onate, M.C. Onyeaju, A.N. Ikot and O. Ebomwonyi, Eigen solutions and entropic system for Hellmann potential in the presence of the Shrodinger equation, Eur. Phys. J. Plus. 132 (2017) 462, https://doi.org/10.1140/epjp/i2017-11729-8
C.O. Edet, K.O. Okorie, H. Louis and N.A. Nzeata-Ibe, Any l-state solutions of the Schrödinger equation interacting with Hellmann-Kratzer potential model. Indian J. Phys. 94 (2020) 243, https://doi.org/10.1007/s12648-019-01467-x.
Z.H. Deng, and Y.P. Fan, A Potential Function of Diatomic Molecules, Shandong Univ. J. 7 (1957) 162.
P.M. Morse, Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels, Phys. Rev. 34 (1929) 57, https://doi.org/10.1103/PhysRev.34.57.
S.H. Dong, Factorization method in quantum mechanics Fundamental Theories in Physics. 150 (The Netherlands: Springer 2007) pp 187-213,
O.J. Oluwadare, K.J., Oyewumi, C.O. Akoshile and O.A. Babalola, Approximate analytical solutions of the relativistic equations with the Deng-Fan molecular potential including a Pekeris-type approximation to the (pseudo) centrifugal term, Physica Scripta, 86 (2012) 035002, https://doi.org/10.1088/0031-8949/86/03/035002.
A.D.S. Mesa, C. Quesne and Y.F. Smirnov, Generalized Morse potential: Symmetry and satellite potentials, J. Phys. A 31 (1998) 321, https://doi.org/10.1088/0305-4470/31/1/028.
S.H. Dong and X.Y. Gu, Arbitrary l state solutions of the Schrödinger equation with the Deng-Fan molecular potential, J. Phys. Conf. Ser. 96 (2008) 012109, https://doi.org/10.1088/1742-6596/96/1/012109.
S.H. Dong, Relativistic Treatment of Spinless Particles Subject to a Rotating Deng-Fan Oscillator, Commun. Theor. Phys. 55 (2011) 969, https://doi.org/10.1088/0253-6102/55/6/05.
H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar and H. Rahimov, Deng-Fan Potential for Relativistic Spinless Particlesan Ansatz Solution, Commun. Theor. Phys. 57 (2012) 339, https://doi.org/10.1088/0253-6102/57/3/02.
S. Ortakaya, H. Hassanabadi and B.H. Yazarloo, Bound state solutions of the Dirac equation with the Deng-Fan potential including a Coulomb tensor interaction, Chin. Phys. B 23 (2014) 030306. https://doi.org/10.1088/1674-1056/23/3/030306.
L.H. Zhang, X.P. Li and C.S. Jia, Approximate analytical solutions of the Dirac equation with the generalized Morse potential model in the presence of the spin symmetry and pseudospin symmetry, Phys. Scr. 80 (2009) 035003, https://doi.org/10.1088/0031-8949/80/03/035003.
E. Maghsoodi, H. Hassanabadi and S. Zarrinkamar, Spectrum of Dirac Equation Under Deng-Fan Scalar and Vector Potentials and a Coulomb Tensor Interaction by SUSYQM, FewBody Syst. 53 (2012) 525, https://doi.org/10.1007/s00601-012-0314-5.
K.J. Oyewumi, O.J. Oluwadare, K. D. Sen and O.A. Babalola, Bound state solutions of the Deng-Fan molecular potential with the Pekeris-type approximation using the NikiforovUvarov (N-U) method, J. Math. Chem. 51 (2012) 976, https://doi.org/10.1007/s10910-012-0123-6.
E. Omugbe, Non-relativistic Energy Spectrum of the DengFan Oscillator via the WKB Approximation Method, Asian J. Phys. Chem. Sci. 8 (2020) 26, https://doi.org/10.9734/ajopacs/2020/v8i130107
P.O. Okoia, C.O. Edetb and T.O. Magu, Relativistic treatment of the Hellmann-generalized Morse potential, Rev. Mex. Fis. 66 (2020) 1, https://doi.org/10.31349/RevMexFis.66.1
O. Ebomwonyi, C.A. Onate, M.C. Onyeaju and A.N. Ikot, Any l- states solutions of the Schrödinger equation interacting with Hellmann-generalized Morse potential model, Karbala Int. J.
Mod. Sci. 3 (2017) 59, https://doi.org/10.1016/j.kijoms.2017.03.001.
H.S. Snyder, The Electromagnetic Field in Quantized SpaceTime, Phys. Rev. 72 (1947) 68, https://doi.org/10.1103/PhysRev.72.68.
A. Connes, M. R. Douglas and A. Schwarz, Noncommutative geometry and Matrix theory, J. High Energy Phys. 1998 (1998) 003. https://doi.org/10.1088/1126-6708/1998/02/003.
N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energy Physics 1999 (1999) 032, https://doi.org/10.1088/1126-6708/1999/09/032.
S. Capozziello, G. Lambiase and G. Scarpetta, Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39 (2000) 15, https://doi.org/10.1023/A:1003634814685.
S. Doplicher, K. Fredenhagen and J.E. Roberts, Spacetime quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39, https://doi.org/10.1016/0370-2693(94)90940-7.
E. Witten, Refection on the fate spacetime, Phys. Today 49 (1996) 24, https://doi.org/10.1063/1.881493.
A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995) 1108, https://doi.org/10.1103/PhysRevD.52.1108.
F. Scardigli, Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the unruh effect, Nuovo Cimento B 110 (1995) 1029, https://doi.org/10.1007/BF02726152.
R.J. Adler and D.I. Santigo, On gravity and the uncertainty principal, Mod. Phys. Lett. A 14 (1999) 1371, https://doi.org/10.1142/S0217732399001462.
T. Kanazawa, G. Lambiase, G. Vilasi and A. Yoshioka, Noncommutative Schwarzschild geometry and generalized uncertainty principle, Eur. Phys. J. C. 79 (2019) 95, https://doi.org/10.1140/epjc/s10052-019-6610-1.
F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment, Phys. Lett. B 452 (1999) 39, https://doi.org/10.1016/S0370-2693(99)00167-7.
P.M. Ho and H.C. Kao, Noncommutative quantum mechanics from noncommutative quantum field Theory, Phys. Rev. Lett. 88 (2002) 151602. https://doi.org/10.1103/PhysRevLett.88.151602.
O. Bertolami, G.J. Rosa, C.M.L. Dearagao, P. Castorina and D. Zappala, Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics, Mod. Phys. Lett. A 21 (2006) 795, https://doi.org/10.1142/S0217732306019840.
P. Gnatenko, Parameters of noncommutativity in Liealgebraic noncommutative space, Phys. Rev. D 99 (2019) 026009, https://doi.org/10.1103/PhysRevD.99.026009.
O. Bertolami and P. Leal, Aspects of phase-space noncommutative quantum mechanics, Phys. Lett. B 750 (2015) 6, https://doi.org/10.1016/j.physletb.2015.08.024.
M.A. De Andrade and C. Neves, Noncommutative mapping from the symplectic formalism, J. Math. Phys. 59 (2018) 012105, https://doi.org/10.1063/1.4986964.
Kh.P. Gnatenko and V.M. Tkachuk, Upper bound on the momentum scale in noncommutative phase space of canonical type, (Europhys. Lett.) 127 (2019) 20008, https://doi.org/10.1209/0295-5075/127/20008.
Kh.P. Gnatenko and TV.M. kachuk, Composite system in rotationally invariant noncommutative phase space, Int. J. Mod. Phys. A 33 (2018) 1850037, https://doi.org/10.1142/S0217751X18500379.
A. Maireche, Bound-state solutions of the modified KleinGordon and Schrödinger equations for arbitrary l-state with the modified Morse potential in the symmetries of noncommutative quantum mechanics, J. Phys. Stud. 25 (2021) 1002, https://doi.org/10.30970/jps.25.1002.
A. Maireche, A Theoretical Model of Deformed Klein–Gordon Equation with Generalized Modified Screened Coulomb Plus Inversely Quadratic Yukawa Potential in RNCQM Symmetries, Few-Body Syst 62 (2021) 12. https://doi.org/10.1007/s00601-021-01596-2
A. Maireche, Solutions of Klein-Gordon equation for the modified central complex potential in the symmetries of noncommutative quantum mechanics, Sri Lankan J. Phys. 22 (2021) 1, Doi:http://doi.org/10.4038/sljp.v22i1.8079
A. Maireche, Theoretical Investigation of the Modified Screened cosine Kratzer potential via Relativistic and Nonrelativistic treatment in the NCQM symmetries, Lat. Am. J. Phys. Educ. 14 (2020) 3310.
A. Maireche, Modified unequal mixture scalar vector Hulthen–Yukawa potentials model as a quark-antiquark interaction and neutral atoms via relativistic treatment using the improved approximation of the centrifugal term and Bopp’s shift method, Few-Body Syst. 61 (2020) 30. https://doi.org/10.1007/s00601-020-01559-z.
J. Gamboa, M. Loewe and J.C. Rojas, Noncommutative quantum mechanics, Phys. Rev. D. 64 (2001) 067901. https://doi.org/10.1103/PhysRevD.64.067901.
A. Maireche, A New Approach to the approximate analytic solution of the three-dimensional Schrödinger equation for Hydrogenic and neutral atoms in the generalized Hellmann potential model Ukr. J. Phys. 65 (2020) 987. https://doi.org/10.15407/ujpe65.11.987
A. Maireche, A New Look at a Nonrelativistic Shell Model: Study of the Mirror Nuclei 17O and 17F in the Symmetries of NCQM, To Phys. J. 5 (2020) 51.
A. Maireche Any l-States solutions of the modified Schrödinger equation with generalized Hellmann–Kratzer potential model in the symmetries of NRNCQM, To Phys. J. 4 (2019) 16, https://purkh.com/index.php/tophy/article/view/521.
E.F. Djema¨ı and H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41 (2004) 837, https://doi.org/10.1088/0253-6102/41/6/837.
Y. Yi, K. Kang, W. Jian-Hua and C. Chi-Yi, Spin-1/2 relativistic particle in a magnetic field in NC phase space, Chin. Phys. C. 34 (2010) 543, https://doi.org/10.1088/1674-1137/34/5/005.
O.G. Valencia and H.L.A. Arias, Thermodynamic properties of diatomic molecule systems under SO (2,1)-anharmonic Eckart potential, Int. J. Quantum Chem. 118 (2018) e25589. https://doi.org/10.1002/qua.25589.
O. Bertolami, J.G. Rosa, C.M.L. de Aragao, P. Castorina and D. Zappala, Noncommutative gravitational quantum well, ` Phys. Rev. D 72 (2005) 025010, https://doi.org/10.1103/PhysRevD.72.025010.
J. Zhang, Fractional angular momentum in non-commutative spaces, Phys. Lett. B 584 (2004) 204, https://doi.org/10.1016/j.physletb.2004.01.049.
M. Chaichian, Sheikh-Jabbari and A. Tureanu, Hydrogen atom spectrum and the Lamb Shift in noncommutative QED, Phys. Rev. Lett. 86 (2001) 2716, https://doi.org/10.1103/PhysRevLett.86.2716.
E.M.C. Abreu, C. Neves and W. Oliveira, Noncommutativity from the symplectic point of view, Int. J. Mod. Phys. A 21 (2006) 5359, https://doi.org/10.1142/S0217751X06034094.
E.M.C. Abreu, J.A. Neto, A.C.R. Mendes C. Neves,W. Oliveira and M.V. Marcial, Lagrangian formulation for noncommutative nonlinear systems, Int. J. Mod. Phys. A 27 (2012) 1250053, https://doi.org/10.1142/S0217751X12500534.
J. Wang and K. Li, The HMW effect in noncommutative quantum mechanics, J. Phys. A Math. Theor. 40 (2007) 2197, https://doi.org/10.1088/1751-8113/40/9/021.
K. Li, and J. Wang, The topological AC effect on non-commutative phase space, Eur. Phys. J. C. 50 (2007) 1007, https://doi.org/10.1140/epjc/s10052-007-0256-0.
A. Maireche, A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential, Sri Lankan J. Phys. 21 (2020) 11, https://doi.org/10.4038/sljp.v21i1.8069.
A. Maireche, Extended of the Schrödinger Equation with New Coulomb Potentials plus Linear and Harmonic Radial Terms in the Symmetries of Noncommutative Quantum Mechanics, J. Nano- Electron. Phys. 10 (2018) 06015, https://doi.org/10.21272/jnep.10(6).06015
A. Maireche, Heavy light mesons in the symmetries of extended nonrelativistic quark model, Yanbu J. Eng. Sci. 17 (2019) 51, https://doi.org/10.53370/001c.23732.
A. Maireche, The Klein–Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space, Mod. Phys. Lett. A. 35 (2020) 052050015. https://doi.org/10.1142/S0217732320500157.
A. Maireche, The Klein-Gordon equation with modified Coulomb potential plus inverse-squareroot potential in three-dimensional noncommutative space, To Phys. J. 3 (2019) 186, https://purkh.com/index.php/tophy/article/view/489
A. Maireche, Bound state solutions of Klein-Gordon and Schrödinger equations with linear combination of Hulth en and Kratzer potentials, Afr. Rev. Phys. 15 (2020) 19, http://lamp.ictp.it/index.php/aphysrev/article/view/1779/620.
H. Motavalli and A.R. Akbarieh, Klein-Gordon equation for the Coulomb potential in noncommutative space, Mod. Phys. Lett. A 25 (2010) 2523, https://doi.org/10.1142/S0217732310033529.
M. Darroodi, H. Mehraban and H. Hassanabadi, The Klein–Gordon equation with the Kratzer potential in the noncommutative space, Mod. Phys. Lett. A 33 (2018) 1850203, https://doi.org/10.1142/S0217732318502036.
A. Saidi and M.B. Sedra, Spin-one (1+3)-dimensional DKP equation with modified Kratzer potential in the noncommutative space, Mod. Phys. Lett. A 35 (2020) 2050014, https://doi.org/10.1142/S0217732320500145.
H. Aounallah and A. Boumali,, Solutions of the Duffin–Kemmer Equation in Non-Commutative Space of Cosmic String and Magnetic Monopole with Allowance for the Aharonov–Bohm and Coulomb Potentials, Phys. Part. Nucl. Lett. 16 (2019) 195, https://doi.org/10.1134/S1547477119030038.
A. Maireche, A model of modified Klein-Gordon equation with modified scalar-vector Yukawa potential, Afr. Rev Phys. 15 (2020) 1, http://lamp.ictp.it/index.php/aphysrev/article/view/1777/618.
A. Maireche, The Relativistic and Nonrelativistic Solutions for the Modified Unequal Mixture of Scalar and Time-Like Vector Cornell Potentials in the Symmetries of Noncommutative Quantum Mechanics, Jordan J. Phys. 14 (2021) 59, https://doi.org/10.47011/14.1.6
L. Mezincescu, Star Operation in Quantum Mechanics, https://arxiv.org/abs/hep-th/0007046.
L. Gouba, A comparative review of four formulations of noncommutative quantum mechanics, Int. J. Mod. Phys. A 31 (2016) 1630025, https://doi.org/10.1142/S0217751X16300258.
F. Bopp, La mecanique quantique est-elle une m ´ ecanique statistique classique particuliere?, Ann. Inst. Henri Poincare´ 15, (1956) 81.
A. Maireche, New Relativistic Bound States for Modified Pseudoharmonic Potential of Dirac Equation with Spin and Pseudo-Spin Symmetry in One-electron Atoms, Afr. Rev Phys. 12 (2017) 130, http://lamp.ictp.it/index.php/aphysrev/article/view/1533/564.
A. Maireche, New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank’s Scales, J. Nano-Electron. Phys. 8 (2016) 01020, https://doi.org/10.21272/jnep.8(1).01020.
A. Maireche, A New Relativistic Study for Interactions in One-electron atoms (Spin 1 2 Particles) with Modified Mie-type Potential J. Nano- Electron. Phys. 8 (2016) 04027. https://doi.org/10.21272/jnep.8(4(1)).04027.
A. Maireche, Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles Int. Front. Sci. Lett. 11 (201) 29, Doi:https://doi.org/10.18052/www.scipress.com/IFSL.11.29
A. Maireche, Nonrelativistic treatment of Hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative Quantum mechanics, Int. J. Geom. Methods Mod. Phys. 17 (2020) 2050067, https://doi.org/10.1142/S021988782050067X.
A. Maireche, A Recent Study of Excited Energy Levels Diatomics for Modified more General Exponential Screened Coulomb Potential: Extended Quantum Mechanics, J. NanoElectron. Phys. 9 (2017) 03021, https://doi.org/10.21272/jnep.9(3).03021.
A. Maireche, A new study of energy levels of hydrogenic atoms and some molecules for new more general exponential screened Coulomb potential, Open Acc J Math Theor Phy. 1 (2018) 232,
Doi:10.15406/oajmtp.2018.01.00040
A. Maireche, Effects of two-dimensional noncommutative theories on bound states Schrödinger diatomic molecules under New modified Kratzer-type interactions, Int. Lett. Chem. Phys. Astron. 76 (2017) 1, https://doi.org/10.18052/www.scipress.com/ILCPA.76.1
R.L. Greene and C. Aldrich, Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14 (1976) 2363, https://doi.org/10.1103/PhysRevA.14.2363.
M. Badawi, N. Bessis and G. Bessis, On the introduction of the rotation-vibration coupling in diatomic molecules and the factorization method, J. Phys. B 5 (1972) L157, https://doi.org/10.1088/0022-3700/5/8/004.
W.C. Qiang, and S.H. Dong, Analytical approximations to the solutions of the Manning–Rosen potential with centrifugal term, Phys. Lett. A 368 (2007) 13, https://doi.org/10.1016/j.physleta.2007.03.057.
F.A. Serrano, X.Y. Gu and S.H. Dong, Qiang–Dong proper quantization rule and its applications to exactly solvable quantum systems, J. Math. Phys. 51 (2010) 082103, https://doi.org/10.1063/1.3466802.
S.-H. Dong, W.-C. Qiang, G.-H. Sun and V.B. Bezerra, Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential, J. Phys. A: Math. Theor. 40 (2007) 10535, https://doi.org/10.1088/1751-8113/40/34/010.
Y. Zhang, Approximate analytical solutions of the KleinGordon equation with scalar and vector Eckart potentials, Phys. Scr. 78 (2008) 015006, https://doi.org/10.1088/0031-8949/78/01/015006.
S. Medjedel and K. Bencheikh, Exact analytical results for density profile in Fourier space and elastic scattering function of a rotating harmonically confined ultra-cold Fermi gas, Phys. Lett. A 383 (2019) 1915, https://doi.org/10.1016/j.physleta.2019.03.021
K. Bencheikh, S. Medjedel and G. Vignale, Current reversals in rapidly rotating ultracold Fermi gases, Phys. Rev. A 89 (2014) 063620, https://doi.org/10.1103/PhysRevA.89.063620.
K.P. Gnatenko, Composite system in noncommutative space and the equivalence principle, Phys. Lett. A 377 (2013) 3061, https://doi.org/10.1016/j.physleta.2013.09.036.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Abdelmadjid Maireche
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.