Optical solitons to fractal nonlinear Schrödinger equation with non-Kerr law nonlinearity in magneto-optic waveguides
DOI:
https://doi.org/10.31349/RevMexFis.68.020707Keywords:
Variational principle, Painleve approach, nonlinear Schrödinger equation, solitons, quadratic-cubic nonlinearityAbstract
This paper introduces the fractal model of the nonlinear Schrodinger equation with quadratic-cubic nonlinearity in magneto-optic waveguides that has many applications in fiber optics. He's variational approach and Painleve technique are used to attain soliton solutions of the governing system. Thus bright and kink solitons are retrieved. The constraint conditions that ensure the existence of these solitons arise naturally from the model's solution structure. The fractal parameter eect on these solitons is portrayed by 2D and 3D graphical illustrations. These techniques may be very useful and ecient gadgets for solving nonlinear fractal dierential equations that emerge in mathematical physics.
References
R. Fedele, H. Schamel, V.I. Karpman and P. K. Shukla, Envelope solitons of nonlinear Schrödinger equation with an anticubic nonlinearity, J. Phys. A. 36 (2003) 1169, https://doi.org/10.1088/0305-4470/36/4/322.
A.-M. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos, Solitons
Fractals 37 (2008) 1136, https://doi.org/10.1016/j.chaos.2006.10.009.
E.M.E. Zayed et al., Solitons in magneto-optic waveguides with dual-power law nonlinearity, Physics Letters A 384 (2020) 126697, https://doi.org/10.1016/j.physleta.2020.126697.
M. Savescu, A.H. Bhrawy, E.M. Hilal, A.A. Alshaery and A. Biswas, Optical solitons in magneto-optic waveguides with spatio-temporal dispersion, Frequenz 68 (2014) 9, https://doi.org/10.1515/freq-2013-0164.
M. Eslami and M. Mirzazadeh, Optical solitons with BiswasMilovic equation for power law and dual-power law nonlinearities, Nonlinear Dyn. 83 (2016) 731, https://doi.org/10.1007/s11071-015-2361-1.
G.P. Agarwal, Fiber-optic communication systems, 3th ed. (John Wiley and Sons, NewYork, 2002).
A.H. Khater, D.K. Callebaut, M.A. Helal and A.R. Seadawy, Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line, Eur. Phys. J. D 39 (2006) 237, https://doi.org/10.1140/epjd/e2006-00093-3.
C. Zhou and X.T. He, Stochastic diffusion of electrons in evolutive Langmuir fields, Phys. Scr. 50 (1994) 415, https://doi.org/10.1088/0031-8949/50/4/015.
I.V. Barashenkoy and V.G. Makhankov, Soliton-like “bubbles” in a system of interacting bosons, Phys. Lett. A 128 (1998) 52, https://doi.org/10.1016/0375-9601(88)91042-0.
A.K. Alomari, T.A. Jawad, D. Baleanu, K.M. Saad and Q.M. Al-Mdallal, Numerical solutions of fractional parabolic equations with generalized Mittag-Leffler kernels, Numer. Methods Partial Differ. Equ. (to be published), https://doi.org/10.1002/num.22699.
A.A. Alderremy et al., New models of fractional blood ethanol and two-cell cubic autocatalator reaction equations, Math.
Methods Appl. Sci. (to be published), https://doi.org/10.1002/mma.7188.
M.M. Khader and K.M. Saad, Numerical studies of the fractional Korteweg-de Vries, Korteweg-de VriesBurgers’ and Burgers’ Equations, Proc. Natl. Acad. Sci. India A 91 (2021) 67, https://doi.org/10.1007/s40010-020-00656-2.
A. Hasegawa and Y. Kodama, Solitons in optical communications (Oxford University Press, NewYork, 1995).
J.F. Gomez-Aguilar ´ et al., Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures, AIP Adv. 11 (2021) 021521, https://doi.org/10.1063/5.0038038.
N. Raza, U. Afzal, A.R. Butt and H. Rezazadeh, Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities, Opt. Quantum Electron. 51 (2019) 107, https://doi.org/10.1007/s11082-019-1813-0.
N. Raza and A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation, Waves in Random and Complex Media 29 (2019) 496, https://doi.org/10.1080/17455030.2018.1451009.
N. Raza and A. Zubair, Optical dark and singular solitons of generalized nonlinear Schrödinger’s equation with anti-cubic law of nonlinearity, Mod. Phys. Lett. B 33 (2019) 1950158, https://doi.org/10.1142/S0217984919501586.
M. Arshad, A.R. Seadawy and D. Lu, Exact brightdark solitary wave solutions of the higher-order cubicquintic nonlinear Schrödinger equation and its stability, Optik 138 (2017) 40, https://doi.org/10.1016/j.ijleo.2017.03.005.
A. Biswas et al., Resonant optical solitons with quadraticcubic nonlinearity by semi-inverse variational principle, Optik 145 (2017) 18, https://doi.org/10.1016/j.ijleo.2017.07.028.
M. Ekici et al., Solitons in magneto-optic waveguides by extended trial function scheme, Superlatt. Microstruct. 107 (2017) 197, https://doi.org/10.1016/j.spmi.2017.04.021.
J. Fujioka et al., Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management, ¨Chaos 21 (2011) 033120, https://doi.org/10.1063/1.3629985.
J.H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Choas, Solitons Fractals 19 (2004) 847, https://doi.org/10.1016/S0960-0779(03)00265-0.
M. Asma, W.A.M. Othman, B.R. Won and A. Biswas, Optical soliton perturbation with quadratic-cubic nonlinearity by semiinverse variational principle, Proc. Rom. Acad. A, 18 (2017) 331.
J.H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B 20 (2006) 1141, https://doi.org/10.1142/S0217979206033796.
A. Biswas et al., Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger equation by semi-inverse variational principle, J. Nonlinear Opt. Phys. Mater. 21 (2012) 1250054, https://doi.org/10.1142/S0218863512500543.
J. Zhang, Variational approach to solitary wave solution of the generalized Zakharov equation, Comput. Math. Appl. 54 (2007) 1043, https://doi.org/10.1016/j.camwa.2006.12.048.
Y. Khan, Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena, Res. Phys. 18 (2020) 103324, https://doi.org/10.1016/j.rinp.2020.103324.
J.H. He, A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals 28 (2020) 2050024, https://doi.org/10.1142/S0218348X20500243.
N.A. Kudryashov, The Painleve approach for finding solitary wave solutions nonlinear nonintegrable differential equations,
Optik 183 (2019) 642, https://doi.org/10.1016/j.ijleo.2019.02.087.
J.H. He, Fractal calculus and its geometrical explanation, Res. Phys. 10 (2018) 272, https://doi.org/10.1016/j.rinp.2018.06.011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 N. Raza, A. Yasmeen, Mustafa Inc
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.