Aberration patterns in the optical testing surfaces using transport of intensity equation

Authors

  • Angel Eugenio Martinez Rodriguez Instituto Nacional de Astrfísica Optica y Electrónica
  • Manuel Campos García Instituto de Ciencias Aplicadas y Tecnología, UNAM
  • F. S. Granados Agustín Instituto Nacional de Astrof´ısica Optica y Electrónica
  • C. Vargas-Alfredo Instituto de Ciencias Aplicadas y Tecnolog´ıa, UNAM

DOI:

https://doi.org/10.31349/RevMexFis.68.011301

Keywords:

Optical Testing, TIE, Wavefront

Abstract

Classic phase retrieval techniques use intensity patterns to obtain typical aberrations such as coma or astigmatism. However, the patterns obtained with the Transport of Intensity Equation techniques have not been studied yet. In this work, we propose a method to obtain intensity distributions of some aberration wavefronts. It is expected that this characterization method may facilitate new testing strategies in optical workshops.

References

M.R. Teague, Irradiance moments: their propagation and use for unique retrieval of phase, J. Opt.Soc.Am.72(1982)1199,https://doi.org/10.1364/JOSA.72.001199.

M.R. Teague, Deterministic phase retrieval: a Green’s function solution, J. Opt. Soc. Am. 73 (1983)1434,https://doi.org/10.1364/JOSA.73.001434.

F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics, Appl.Opt. 27(1988)1223,https://doi.org/10.1364/AO.27.001223.

F. Roddier, Wavefront sensing and the irradiance transport equation, Appl. Opt. 29 (1990) 1402, https://doi.org/10.1364/AO.29.001402.

C. Zuo, J. Li, J. Sun, Y. Fan, J. Zhang, L. Lu, R. Zhang, B. Wang, L. Huang, and Q. Chen, Transport of intensity equation: a tutorial. Optics and Lasers in Engineering, Opt. Lasers Eng. 135 (2020) 106187.https://doi.org/10.1016/j.optlaseng.2020.106187.

P. Soltani, A.R. Moradi, A. Darudi, and R. Shomali, High resolution optical surface testing using transport of intensity equation, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications 8785(2013)87851K-1. https://doi.org/10.1117/12.2026289.

R. M. More, and K. Kosaka, Wave-front curvature in geometrical optics, Phys. Rev. E, 57, (1998), https://doi.org/10.1103/physreve.57.6127.

C.S. Liu, P.D. Lin, Computational method for deriving the geometric point spread function of an optical system,Appl. Opt. 49 (2010)126,https://doi.org/10.1364/AO.49.000126.

M. Campos-García, A. E. Martínez-Rodríguez, and F. S. Granados-Agustín, Calculation of intensity distribution from a wavefront using ray-counting method, Proc. SPIE 11057, Modeling Aspects in Optical Metrology VII, 110571L (2019), https://doi.org/10.1117/12.2526245.

A.E. Martínez-Rodríguez, Análisis Teórico y Numérico de la Ecuación de Transporte de Irradiancia (Theoretical and Numerical Analysis of the Irradiance Transport Equation), PhD Thesis (2021)53.

M. Campos-García, R. Díaz-Uribe, Irradiance transport equation from Poynting’s theorem, Rev. Mex. Fís. 52 (2006) 546, http://www.ejournal.unam.mx/rmf/no526/RMF005200609.pdf

D. Paganin, and K.A. Nugent, Noninterferometric phase imaging with partially coherent light, Phys. Rev. Lett. 80 (1998) 2586, https://doi.org/10.1103/PhysRevLett.80.2586

J. C. Wyant, Basic Wavefront Aberration Theory for Optical Metrology, Appl. Opt. and Opt. Eng.11(1992)27, http://wyant.optics.arizona.edu/zernikes/Zernikes.pdf

V. Lakshminarayanan, and A. Fleck, Zernike polynomials: A guide, J. Mod. Opt., 58 (2011)1678. https://doi.org/10.1080/09500340.2011.554896

Downloads

Published

2022-01-01