Reconfigurable optical fiber Fabry-Perot interferometer and its applications for displacement sensing

Authors

  • Guillermo Salceda-Delgado UANL
  • J. E. Antonio-Lopez The College of Optics and Photonics, University of Central Florida
  • A. Martinez-Rios Centro de Investigaciones en Optica, A. C.
  • R. Amezcua-Correa The College of Optics and Photonics, University of Central Florida
  • G. Anzueto-S´anchez Centro de Investigaciones en Optica, A. C.
  • I. Torres-G´omez Centro de Investigaciones en Optica, A. C.
  • V. M. Duran-Ramirez Centro Universitario de los Lagos, Universidad de Guadalajara

DOI:

https://doi.org/10.31349/RevMexFis.68.021301

Keywords:

Optical interferometry, optical fibers, optical device fabrication, optical sensors, optical fiber devices

Abstract

We report on a functional Fabry-Perot mode interferometer and its application for absolute displacement sensing. The proposed device consists of two well-cleaved tips of standard optical fibers that were introduced into a microcapillary glass with an inner diameter of 125.5 um, one tip was stuck to the capillary by the application of an electric arc from a standard splice machine, while the other tip was free to be longitudinally moved. The transmission spectrum of the interferometric device exhibited an interferometric pattern due to the re ections of the fundamental mode on the two partial re ecting tip surfaces of the standard optical bers. The period and the intensity level of the interference pattern depend strongly on the separation between the optical ber tips caused by the displacement of the free optical fiber tip. This dependence allows for the use
of either period or intensity changes for length displacement sensing interrogation. For the period interrogation, the length can be accurately calculated and measured by taking the Fast Fourier Transform (FFT) of the detected interference pattern. For intensity interrogation, a simple photodetector can be used to determine the distance that separates the optical fiber tips.

References

H. A. Rahman, S. W. Harun, N. Saidin, M. Yasin, and H. Ahmad. Fiber optic displacement sensor for temperature measurement.

IEEE Sens. J. 12 (2011) 1361, https://dx.doi.org/10.1109/jsen.2011.2172409.

J. Chen, J. Zhou, and Z. Jia. High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer. IEEE

Photonics Technol. Lett. 25 (2013) 2354. https://dx.doi.org/10.1109/lpt.2013.2285160.

A. Mehta, W. Mohammed, and E. G. Johnson. Multimode interference- based fiber-optic displacement sensor. IEEE Photonics

Technol. Lett. 15 (2003) 1129. https://dx.doi.org/10.1109/lpt.2003.815338.

N. Lagakos, T. Litovitz, P. Macedo, R. Mohr, and R. Meister. Multimode optical fiber displacement sensor. Appl. Opt. 20 (1981) 167. https://dx.doi.org/10.1063/1.50340.

L.-H. Kang, D.-K. Kim, and J.-H. Han. Estimation of dynamic structural displacements using fiber Bragg grating strain sensors.

J. Sound Vib. 305 (2007) 534. https://dx.doi.org/10.1016/j.jsv.2007.04.037.

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Ngo. A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement. Smart Mater. Struct. 14 (2005) N7. htt´;/dx.doi.org/10.1109/sopo.2011.5780559.

C. Shen and C. Zhong. Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement. Sens. Actuators 170 (2011) 51. https://dx.doi.org/10.1016/j.sna.2011.05.030.

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus. Quadra- ture phase-shifted, extrinsic Fabry-Perot optical fiber sensors. Opt. lett. 16 (1991) 273. https://dx.doi.org/10.1364/ol.16.000273.

X. Zhou and Q. Yu. Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement. IEEE sens. J. 11 (2010) 1602. https://dx.doi.org/10.1109/jsen.2010.2103307.

J. Zheng and S. Albin. Self-referenced re ective intensity modulated fiber optic displacement sensor. Opt. En. 38 (1999) 227.

https://dx.doi.org/10.1117/1.602260.

A. Shimamoto and K. Tanaka. Optical fiber bundle displacement sensor using an ac-modulated light source with subnanometer resolution and low thermal drift. Appl. opt. 34 (1995) 5854. htts://doi.org/10.1364/ao.34.005854.

J.-H. Kuang, P.-C. Chen, and Y.-C. Chen. Plastic optical fiber displacement sensor based on dual cycling bending. Sens. 10 (2010) 10198. https://dx.doi.org/10.3390/s101110198.

M. Yasin et al., Simple design of optical fiber displacement sensor using a multimode fiber coupler. Laser phys. 19 (2009) 1446. https://dx.doi.org/10.1134/s1054660x09070123.

T. L¨u, Z. Li, Q. Du, and J. Bi, Fiber-optic angle sensor based on an extrinsic Fabry-Perot cavity. Sens. Actuators, A 148 (2008) 83. https://dx.doi.org/10.1016/j.sna.2008.07.026.

F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus. Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sens. Actuators, B 59 (1999) 54. https://dx.doi.org/10.1016/s0925-4005(99) 00232-4.

J. Zhang, J. Yang, W. Sun, W. Jin, L. Yuan, and G. Peng. Composite cavity based fiber optic Fabry-Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror. Meas. Sci. Technol. 19 (2008) 085305. https://dx.doi.org/10.1088/0957-0233/19/8/085305.

Z. Ma, S. Cheng, W. Kou, H. Chen, W. Wang, X. Zhang, and T. Guo. Sensitivity-Enhanced Extrinsic Fabry-Perot Interferometric

Fiber-Optic Microcavity Strain Sensor. Sens. 19 (2019) 4097. https://dx.doi.org/10.3390/s19194097.

Y. Lu, M. Han, and J. Tian. Fiber-optic temperature sensor using a Fabry-P´erot cavity filled with gas of variable pressure.

IEEE Photonics Technol. Lett. 26 (2014) 757, https://dx.doi.org/10.1109/lpt.2014.2304297.

Z. Cao, L. Jiang, S. Wang, M. Wang, D. Liu, P. Wang, F. Zhang, and Y. Lu. All-glass extrinsic Fabry-Perot interferometer thermo-optic coefficient s ensor based on a capillary bridged two fiber ends. Appl. opt. 54 (2015) 2371. https://dx.doi.org/10.1364/ao.54.002371.

Q. Yu and X. Zhou. Pressure sensor based on the fiberoptic extrinsic Fabry-Perot interferometer. Photonic Sens. 1 (2011) 72. https://dx.doi.org/10.1007/s13320-010-0017-9.

R. Gao, D.-F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z.-M. Qi. Optical displacement sensor in a capillary covered hollow core fiber based on anti- resonant reflecting guidance. IEEE J. Sel. Top. Quantum Electron. 23 (2016) 193. https://dx.doi.org/10.1109/jstqe.2016.2544705.

S.-H. Kim, J.-J. Lee, D.-C. Lee, and I.-B. Kwon. A study on the devel- opment of transmission-type extrinsic Fabry-Perot interferometric optical fiber sensor. Journal of light. technol. 17 (1999) 1869. https://dx.doi.org/10.1109/50.793768.

C. Liao, T. Hu, and D. Wang. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining

and fusion splicing for refractive index sensing. Opt. express 20 (2012) 22813. https://dx.doi.org/10.1364/oe.20.022813.

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. Cardenas-Sevilla, and J. Villatoro. Optical microfiber mode interferometer for temperature-independent refractometric sensing. Opt. lett. 37 (2012) 1974. https://dx.doi.org/10.1364/ol.37.001974.

D. Leandro, M. Bravo, A. Ortigosa, and M. Lopez-Amo. Realtime FFT analysis for interferometric sensors multiplexing. Journal of Light. Technol. 33 (2015) 354. https://dx.doi.org/10.1109/jlt.2014.2388134

Downloads

Published

2022-03-01

How to Cite

[1]
G. Salceda-Delgado, “Reconfigurable optical fiber Fabry-Perot interferometer and its applications for displacement sensing”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 021301 1–, Mar. 2022.