Characterizing errors for Quantum Fourier Transform on IBM Q

Authors

  • Carolina Allende Universidad ORT Uruguay
  • André Fonseca de Oliveira Universidad ORT Uruguay
  • Efrain Buksman Universidad ORT Uruguay

DOI:

https://doi.org/10.31349/RevMexFis.68.031402

Keywords:

Quantum Fourier transform, quantum error correction, IBM quantum

Abstract

The performance of today's quantum computers are affected by noise. This effect can be analyzed in the result of simple quantum algorithms in real quantum computers. The noise can be characterized as a decoherence error or a systematic error, the last could be corrected by a unitary rotation.
In this article we propose two methods to model a systematic error, in the Quantum Fourier Transform algorithm (QFT). The first method uses the isotropic index presented in ``  [1] and needs to reconstruct the density matrix of the experimental state, while the second method, although less general, only needs to reconstruct the reduced density matrices for each qubit.
In both methods, a unitary transformation is proposed, which approximates the experimental result to the expected theoretical state. As an example, the QFT algorithm is analyzed for two qubit states, in quantum IBM Q computer ibmq\_santiago.

Author Biography

Efrain Buksman, Universidad ORT Uruguay

Department of Engineering

References

A. Fonseca de Oliveira, E. Buksman, I. Cohn and J. Garc´ıa Lopez de Lacalle, Characterizing error propagation in quantum circuits: the Isotropic Index, Quantum Inf. Process. 16 (2017) 48, https://doi.org/10.1007/s11128-016-1507-5.

E. Magesan, D. Puzzuoli, C. E. Granade and D. G. Cory, Modeling quantum noise for efficient testing of fault-tolerant circuits, Phys. Rev. A 87 (2013) 012324, https://doi.org/10.1103/PhysRevA.87.012324.

L. Lao and C. G. Almudever, Fault-tolerant quantum error correction on near-term quantum processors using ag and bridge

qubits, Phys. Rev. A 101 (2020) 032333, https://doi.org/10.1103/PhysRevA.101.032333.

M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Am. J. Phys. 70 (2002) 558, https://doi.org/10.1119/1.1463744.

P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM J. Comput. 26 (1997) 1484, https://doi.org/10.1137/S0097539795293172.

K. Srinivasan, S. Satyajit, B. K. Behera and P. K. Panigrahi, Efficient quantum algorithm for solving travelling salesman problem: An IBM Quantum Experience (2018).

A. Barenco, A. Ekert, K.-A. Suominen and P. Torm¨ a, Approximate quantum Fourier transform and decoherence, Phys. Rev. A 54 (1996) 139, https://doi.org/10.1103/PhysRevA.54.139.

A. Martin, L. Lamata, E. Solano and M. Sanz, Digital-analog quantum algorithm for the quantum Fourier transform, Phys. Rev. Research 2 (2020) 013012, https://doi.org/10.1103/PhysRevResearch.2.013012.

IBM Quantum, Quantum Experience (2021). https://quantum-computinig.bm.com/.

Downloads

Published

2022-05-01

How to Cite

[1]
C. . Allende, A. . Fonseca de Oliveira, and E. Buksman, “Characterizing errors for Quantum Fourier Transform on IBM Q”, Rev. Mex. Fís., vol. 68, no. 3 May-Jun, pp. 031402 1–, May 2022.

Issue

Section

14 Other areas in Physics