Optical and thermal properties of the half-Heusler VFeSb and NbFeSb alloys

Authors

  • Kaddour Bencherif University of AinTemouchent Belhadj Bouchaib

DOI:

https://doi.org/10.31349/RevMexFis.68.021601

Keywords:

DFT, (mBJ)-LDA, optical properties, thermal properties; half-Heusler

Abstract

In this work, we used the First-principles method Fplapw based on density functional theory (DFT) to study the thermal and optical properties of Half-Heusler compounds VFeSb and NbFeSb. These materials are characterized with a small and narrow band gap semiconductors close to the fermi level; following the electron number and other structural properties of these materials have a high performance thermoelectric .In our calculations, we will use the structural and electronic properties for our materials already calculated in previous publications. The modified Becke–Johnson exchange potential (mBJ)-LDA approach was also used. Optical properties such as complex dielectric function, refractive index, reflectivity, energy loss function for incident photon energy up to 30eV have been predicted. We also analyze the influence of the pressure and temperature on the primitive cell volume, heat capacity, volume expansion coefficient, and Debye temperature of the Half-Heusler compounds.

References

J. Pierre et al., Properties on request in Half -Heusler phases, J. Alloys Compd. 262-263 (1997) 101, htts://doi.org/10.1016/S0925-8388(97)00337-X.

H. Hohl et al., Efficient dopants for ZrNiSn-based thermoelectric materials, J. Phys. Condens. Matter 11 (1999) 1697, htts://doi.org/10.1088/0953-8984/11/7/004.

D. P. Young, P. Khalifah, R. J. Cava, and A. P. Ramirez, Thermoelectric properties of pure and doped FeMSb (M=V,Nb); J. Appl. Phys. 87 (2000) 317. htts://doi.org/10.1063/1.371863.

J. Yang, Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties, Adv. Funct. Mater. 18 (2008) 2880. htts://doi.org/10.1002/adfm.200701369.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, htts://euler.phys.cmu.edu/cluster/WIEN2k/usersguide.pdf.

M. Hachemaoui et al., FP-APW + lo study of the elastic, electronic and optical properties of the filled skutterudites CeFe4As12 and CeFe4Sb12, Curr. Opin. Solid State Mater. Sci. 13 (2009) 105. htts://doi.org/10.1016/j.cossms.2009.04.004.

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy; Phys. Rev. B 45

(1992) 13244. htts://doi.org/10.1103/PhysRevB.45.13244.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects Phys. Rev. 140 (1965) A1133. htts://doi.org/10.1103/PhysRev.140.A1133.

H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations; Phys. Rev. B 13 (1976) 5188, htts://doi.org/10.1103/PhysRevB.13.5188.

F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 102 (2009) 226401. htts://doi.org/10.1103/PhysRevLett.102.226401.

W. Feng, D. Xiao, Y. Zhang, and Y. Yao, Half-Heusler Topological Insulators: A First-Principle Study with the TranBlaha Modified Becke-Johnson Density Functional; Phys. Rev. B 82 (2010) 235121, htts://doi.org/10.1103/PhysRevB.82.235121.

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. USA 30 (1944) 5390. https://doi.org/10.1073/pnas.30.9.244.

P. Villars, L. D. Calvert and W. B. Pearson, Pearson’s handbook of crystallographic data for intermetallic phases. (American Society for Metals. Metals Park. 1985).

J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1992) 13244. htts://doi.org/10.1103/PhysRevB.45.13244.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlations Effects, Phys. Rev. 140 (1965) A1133. htts://doi.org/10.1557/PROC-278-313.

P. E. Blochl, O. Jepsen, and O. K. Anderson, Improved tetra- ¨edron method for Brillouin-zone integration, Phys. Rev. B 49

(1994) 16223. htts://doi.org/10.1103/PhysRevB.49.16223.

C. C¸ oban, K. C¸ olakoglu and Y. O. C¸ iftc¸i, First principles study of the structural, mechanical, phonon, optical, and thermodynamic properties of half- Heusler (HH) compound NbFeSb, Phys. Scr. 90 (2015) 095701, https://doi.org/10.1088/0031-8949/90/9/095701.

A. Page, P.F.P. Poudeu, and C. Uhera, A first-principles approach to half- Heusler thermoelectrics: Accelerated prediction and understanding of material properties, J. Materiomics, 2 (2016) 104. htts://doi.org/10.1016/j.jmat.2016.04.006.

J. Sun, H. Wang, J. He, Y. Tian, Ab initio investigations of optical properties of the high-pressure phases of ZnO, Phys. Rev. B 71 (2005) 125132. htts://doi.org/10.1103/PhysRevB.71.125132.

Y. Huan, C. Jing, Li. Zhe, and X.-R. Chen, First-principles calculations for electronic and optical properties of the zinc blende

structured BeS compound under pressure; Chin. Phys. B 18 (2009) 10. htts://iopscience.iop.org/article/10.1088/16741056/18/10/056/pdf.

X.-W. Sun et al., Heat Capacity and Gruneisen Parameter for GaN with Zinc-Blende Structure; Chin. J. Chem. Phys. 20 (2007) 233. htts://doi.org/10.1088/1674-0068/20/03/233-236.

Z. L. Lv, Y. Cheng, X. R. Chen, and G. F. Ji, Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation, J. Alloys Compd. 570 (2013) 156, htts://doi.org/10.1016/j.jallcom.2013.03.132.

M. A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermal isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Compt. Phys. Commun., 158 (2004) 57, htts://doi.org/10.1016/j.comphy.2003.12.001.

F. Q. Wang, Y. Guo, Q. Wang, Y. Kawazoe, and P. Jena, Exceptional Thermoelectric Properties of Layered GeAs2, Chem. Mater. 29 (2017) 9300. htts://pubs.acs.org/doi/10.1021/acs.chemmater.7b03279.

B. Boucher et al., Enhancement of the Thermoelectric Properties of F eGa3-type Structures with Group 6 Transition Metals: A Computational Exploration, Inorg. Chem. 56 (2017) 4229. htts://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b00251.

Downloads

Published

2022-03-01

How to Cite

[1]
K. Bencherif, “Optical and thermal properties of the half-Heusler VFeSb and NbFeSb alloys”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 021601 1–, Mar. 2022.