First-principles investigations of electronic and optical properties of Er-doped GaN involved in ErGaN/ErN quantum well heterostructures

Authors

  • S. Amiris National Polytechnic School of Oran-Maurice Audin
  • K. Agroui Semiconductors Technology for Energetic Research Center
  • B. Amiri ENS of Bechar
  • M. Abboun Abid National Polytechnic School of Oran-Maurice Audin
  • A. Belghachi Bechar University Tahri Mohamed

DOI:

https://doi.org/10.31349/RevMexFis.68.031301

Keywords:

RE:III-N quantum well GGA U BoltzTrap

Abstract

We study the electronic, optic and transport properties of both bulk materials ErN and Er0.125Ga0.875N, where crystallize in zinc-blind and wurtzite structure respectively which are materials involved form a quantum well devices.Based on density functional theory, by applying the full-potential linearized augmented plane-wave method with spin orbit coupling effect. The
analysis of the electronic properties show that the ErN and Er0.125Ga0.875N has a band gap at 0.79 and 3.38eV respectively. on the other hand, the technology makes possible to stack these materials for a quantum well heterostructure of Er0.125Ga0.875N/ErN.The optical properties such as optical coefficients, refractive index and extinction coefficient are discussed in detail. The transport properties of alloys are investigated using the semi-classical Boltzmann theory as implemented in the BoltzTraP code in conjunction with ab initio electronic structure calculations. Our result shows that Er doping of wide band gap semiconductors is could be a potential candidate for quantum wells devices.

References

L. C. Bannow et al., An ab initio based approach to optical properties of semiconductor heterostructures, Model. Simul. Mater. Sci. Eng. 25 (2017) 065001, https://doi.org/10.1088/1361-651X/aa7478.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, Erbiumdoped GaN optical amplifiers operating at 1.54 µm, Appl. Phys. Lett. 95 (2009) 111109, https://doi.org/10.1063/1.3224203.

S. Tab et al., Structural, elastic, electronic, and magnetic properties of quaternary alloys BBi0.75Mn0.125N0.125: A first principles study, Rev. Mex. Fis. 66 (2020) 627, https://doi.org/10.31349/RevMexFis.66.627.

B. Amiri, A. Lazreg, and F. A. Bensamer, Optical and Thermoelectric properties of Gd doped Wurtzite GaN, Optik 240 (2021) 166798, https://doi.org/10.1016/j.ijleo.2021.166798.

A. G. Petukhov, W. R. L. Lambrecht, and B. Segall, Electronic structure of rar-earth pnictides, Phys. Rev. B 53 (1996) 4324,

https://doi.org/10.1103/PhysRevB.53.4324.

K. P. O’Donnell and V. Dierolf, Rare Earth Doped IIINitrides for Optoelectronic and Spintronic Applications (Springer, Dordrecht, 2010), https://doi.org/10.

/978-90-481-2877-8.

C. Ugolini et al., Formation energy of optically active Er3+centers in Er doped GaN, Appl. Phys. Lett. 101 (2012) 051114,

https://doi.org/10.1063/1.4742196.

S. Kasap and P. Capper, Nano-Engineered Tunable Photonic Crystals, in Springer Handbook of Electronic and Photonic Materials (Springer, Cham, 2017), https://doi.org/10.1007/978-3-319-48933-9.

T. Trupke, M. A. Green, and P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light, J. Appl. Phys. 92 (2002) 4117, https://doi.org/10.1063/1.1505677.

M. Haase and H. Schafer, Upconverting Nanoparticles, ¨Angew. Chem. Int. Ed. 50 (2011) 5808, https://doi.org/10.1002/anie.201005159.

M. B. Spitzer, H. P. Jenssen, A. Cassanho, An approach to downconversion solar cells, Sol. Energy Mater. Sol. Cells 108 (2013) 241, https://doi.org/10.1016/j.solmat.2012.08.011.

A. J. Steckl, J. H. Park, and J. M. Zavada, Prospects for rare earth doped GaN lasers on Si, Mater. Today 10 (2007) 20, https://doi.org/10.1016/S1369-7021(07)70176-1.

T. M. Al Tahtamouni, M. Stachowicz, J. Li, J. Y. Lin, and H. X. Jiang, Dramatic enhancement of 1.54 µm emission in Er doped GaN quantum well structures, Appl. Phys. Lett. 106 (2015) 121106, https://doi.org/10.1063/1.4916393.

W. Kohn, Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms, Phys. Rev. Lett. 76 (1996) 3168, https://doi.org/10.1103/PhysRevLett.76.3168.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133, https://doi.org/10.1103/PhysRev.140.A1133.

P. Blaha et al., WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, 2001.

E. Sjostedt, L. Nordstr ¨ om, and D. J. Singh, An alternative way of linearizing the augmented plane-wave method, Solid State

Commun. 114 (2000) 15, https://doi.org/10.1016/S0038-1098(99)00577-3.

K. Schwarz and P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci. 28 (2003) 259, https://doi.org/10.1016/S0927-0256(03)00112-5.

B. N. Harmon, V. P. Antropov, A. I. Liechtenstein, I. V. Solovyev, and V. I. Anisimov, Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results, J. Phys. Chem. Solids 56 (1995) 1521, https://doi.org/10.1016/0022-3697(95)00122-0.

F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401.

G. K. H. Madsen, J. Carrete, and M. J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231 (2018) 140, https://doi.org/10.1016/j.cpc.2018.05.010.

J.-S. Filhol, R. Jones, M. J. Shaw, and P. R. Briddon, Structure and electrical activity of rare-earth dopants in GaN, Appl. Phys. Lett. 84 (2004) 2841, https://doi.org/10.1063/1.1710710.

M. Lantri et al., Effect of Erbium doping on GaN electronic and optical properties: First-principles study, Mod. Phys. Lett. B 33 (2019) 1950327, https://doi.org/10.1142/S0217984919503275.

A. Lazreg, Z. Dridi, F. Benkabou, and B. Bouhafs, Electronic structure of cubic ErxGa1−xN using the LSDA+U approach, Phys. B 403 (2008) 2702, https://doi.org/10.1016/j.physb.2008.02.003.

P. Larson, W. R. L. Lambrecht, A. Chantis, and M. van Schilfgaarde, Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry, Phys. Rev. B 75 (2007) 045114, https://doi.org/10.1103/PhysRevB.75.045114.

J. Singh, Optical Properties of Condensed Matter and Applications (John Wiley and Sons, New York, 2006), https://doi.org/10.1002/0470021942.

B. Amiri, A. Belghachi, H. Benslimane, and A. Talhi, Potential of multiplequantum well tandem solar cells based on GaPxAs1−x/GayIn1−yAs, Optik 147 (2017) 283, https://doi.org/10.1016/j.ijleo.2017.08.081.

S. Fara, P. Sterian, L. Fara, M. Iancu, and A. Sterian, New Results in Optical Modelling of Quantum Well Solar Cells, Int. J. Photoenergy 2012 (2012) 810801, https://doi.org/10.1155/2012/810801.

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed. (Wiley, New York, 2016).

Downloads

Published

2022-05-01

How to Cite

Amiris, S., K. Agroui, B. Amiri, M. Abboun Abid, and A. Belghachi. 2022. “First-Principles Investigations of Electronic and Optical Properties of Er-Doped GaN Involved in ErGaN/ErN Quantum Well Heterostructures”. Revista Mexicana De Física 68 (3 May-Jun):031301 1-0. https://doi.org/10.31349/RevMexFis.68.031301.