Estrategias de movilidad basadas en la teoría de percolación para evitar la diseminación de enfermedades: COVID-19

Authors

  • Jhony Ramírez BUAP
  • D. Rosales Herrera Benemérita Universidad Autónoma de Puebla
  • J. Velázquez Castro Benemérita Universidad Autónoma de Puebla
  • B. Díaz Universidad Carlos III de Madrid
  • M. I. Martínez Benemérita Universidad Autónoma de Puebla
  • P. Vázquez Juárez Benemérita Universidad Autónoma de Puebla
  • A. Fernández Téllez Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.31349/RevMexFis.68.011701

Keywords:

Percolation theory, percolation threshold, disease propagation, COVID-19

Abstract

Human mobility is an important factor in the propagation of infectious diseases. In particular, the spatial spread of a disease is a consequence of human mobility. On the other hand, the control strategies based on mobility restrictions are generally unpopular and costly. These  high social and economic costs make it very important to design global protocols where the cost is minimized and eects maximized. In this work, we calculate the percolation threshold of the spread in a network of a disease. In particular, we found the number of roads to close and regions to isolate in the Puebla State, Mexico, to avoid the global spread of COVID-19.  Computational simulations taking into account the proposed strategy show a potential reduction of 94% of infections. This methodology can be used in broader and dierent areas to help in the design of health policies.

References

A. Kronbichler et al., Asymptomatic patients as a source of covid-19 infections: A systematic review and meta-analysis,

Int. J. Infect. Dis. 98 (2020) 180.

C. Masetti et al., High mortality in covid-19 patients with mild respiratory disease, Eur. J. Clin. Invest. 50 (2020) e13314.

A. A. Saberi, Recent advances in percolation theory and its applications, Phys. Rep. 578 (2015) 1.

R. M. D’Souza, J. Gomez-Garde ´ nes, J. Nagler y A. Arenas, Explosive phenomena in complex networks, Adv. Phys. 68 (2019)

D. Stauffer y A. Aharony, Introduction to percolation theory. (Taylor & Francis, 2014).

M. Braun, J. Dias de Deus, A. Hirsch, C. Pajares, R. Scharenberg, y B. Srivastava, De-confinement and clustering of color

sources in nuclear collisions, Phys. Rep. 599 (2015) 1.

I. Bautista, C. Pajares y J. E. Ram´ırez, String percolation in aa and p+p collisions, Rev. Mex. Fis. 65 (2019) 197.

J. E. Ram´ırez, B. D´ıaz y C. Pajares, Interacting color strings as the origin of the liquid behavior of the quark-gluon plasma,

Phys. Rev. D 103 (2021) 094029.

P. E. Seiden y L. S. Schulman, Percolation model of galactic structure, Adv. Phys. 39 (1990) 1.

H. L. Frisch y J. M. Hammersley, Percolation processes and related topics, J. Soc. Ind. Appl. Math. 11 (1963) 894.

P. Grassberger, On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci. 63 (1983)

L. Sander, C. Warren, I. Sokolov, C. Simon y J. Koopman, Percolation on heterogeneous networks as a model for epidemics,

Math. Biosci 180 (2002) 293.

J. C. Miller, Percolation and epidemics in random clustered networks, Phys. Rev. E. 80 (2009) 020901.

D. S. Callaway, M. E. J. Newman, S. H. Strogatz y D. J. Watts, Network robustness and fragility: Percolation on random

graphs, Phys. Rev. Lett. 85 (2000) 5468.

M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E. 66 (2002) 016128.

N. Madar, T. Kalisky, R. Cohen, D. ben Avraham y S. Havlin, Immunization and epidemic dynamics in complex networks,

Eur. Phys. J. B. 38 (2004) 269.

J. E. Ram´ırez et al., Percolation strategy to improve the production of plants with high pathogen susceptibility, Phys. Rev.

E. 98 (2018) 062409; D. Rosales Herrera et al., Percolationintercropping strategies to prevent dissemination of phytopathogens on plantations, Chaos 31 (2021) 063105, DOI:10.1063/5.0044714.

J. E. Ram´ırez et al., Site-bond percolation solution to preventing the propagation of phytophthora zoospores on plantations,

Phys. Rev. E 101 (2020) 032301.

R. M. Ziff, Percolation and the pandemic, Physica A 568 (2021) 125723.

C. A. Browne, D. B. Amchin, J. Schneider y S. S. Datta, Infection percolation: A dynamic network model of disease spreading, Front. Phys. 9 (2021) 171.

G. Oliveira, Early epidemic spread, percolation and covid-19, J. Math. Biol. 81 (2020) 1143.

I. F. Mello, L. Squillante, G. O. Gomes, A. C. Seridonio y M. de Souza, Epidemics, the Ising-model and percolation theory:

A comprehensive review focused on Covid-19, Physica A 573 (2021) 125963.

A. Galeazzi et al., Human mobility in response to COVID-19 in France, Italy and UK. Sci Rep 11 (2021) 13141. https://doi.org/10.1038/s41598-021-92399-2.

htt://www.microrregiones.gob.mx/catloc/Default.aspx?tipo=clave&campo=mun&valor=21, Noviembre,2020.

htt://www.sct.gob.mx/fileadmin/DireccionesGrales/DGST/Datos-Viales-2013/Velocidad/21PUEBLA.pdf, Noviembre, 2020.

INEGI, Anuario estad´ıstico y geografico de puebla 2017. ´

htt://www.sct.gob.mx/fileadmin/DireccionesGrales/DGP/Atlas/Map2016/PUEBLA.pdf, Noviembre, 2020.

M. E. Newman, The structure and function of complex networks, SIAM review 45 (2003) 167.

M. E. Newman y R. M. Ziff, Fast monte carlo algorithm for siteor bond percolation, Phys. Rev. E 64 (2001) 016706.

J. Hoshen, P. Klymko y R. Kopelman, Percolation and cluster distribution. iii. algorithms for the site-bond problem, J. Stat.

Phys. 21 (1979) 583.

F. Radicchi, Predicting percolation thresholds in networks, Phys. Rev. E 91 (2015) 010801.

Y. Y. Tarasevich y S. C. van der Marck, An investigation of site-bond percolation on many lattices, Int. J. Mod. Phys. C 10

(1999) 1193.

C. Poletto, M. Tizzoni y V. Colizza, Human mobility and time spent at destination: Impact on spatial epidemic spreading, J.

Theor. Biol. 338 (2013) 41.

D. Bichara, Y. Kang, C. Castillo-Chavez, R. Horan y C. Perrings, SIS and SIR Epidemic Models Under Virtual Dispersal,

Bull. Math. Biol. 77 (2015) 2004.

J. Velazquez-Castro, A. Anzo-Hern ´ andez, B. Bonilla-Capilla, M. Soto-Bajo y A. Fraguela-Collar, Vector-borne disease risk

indexes in spatially structured populations, PLoS Negl. Trop. Dis. 12 (2018) e0006234.

F. Croccolo y H. E. Roman, Spreading of infections on random graphs: A percolation-type model for COVID-19, Chaos, Solitons Fractals 139 (2020) 110077.

D. Caccavo, Chinese and italian covid-19 outbreaks can be correctly described by a modiffed sird model, (medRxiv, 2020).

Y.-C. Chen, P.-E. Lu, C.-S. Chang y T.-H. Liu, A timedependent sir model for covid-19 with undetectable infected persons, IEEE Trans. Network Sci. Eng. 7 (2020) 3279.

htts://covid19.who.int/region/euro/country/es, Noviembre, 2020.

htts://covid19.who.int/region/euro/country/it, Noviembre, 2020.

htts://covid19.who.int/region/amro/country/mx, Noviembre, 2020.

htts://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/, Noviembre, 2020.

H. Deng, J. Du, J. Gao, and Q. Wang, Network percolation reveals adaptive bridges of the mobility network response to

COVID-19. PLoS ONE 16 (2021) e0258868, https://doi.org/10.1371/journal.pone.0258868

Downloads

Published

2022-01-01

Issue

Section

17 Thermodynamics and Statistical Physics