A study of order-disorder phase transformation in Ag50Pd50 alloy

Authors

  • G Shabbir PINSTECH. Nilore Islamabad
  • A. B. Ziya

DOI:

https://doi.org/10.31349/RevMexFis.68.021002

Keywords:

alloys, Crystalline phase transformation, X-Ray diffraction, electrical resistivity

Abstract

In this study, the structure of Ag50Pd50 alloy was investigated with temperature dependent in-situ X-ray diffraction, residual resistometry, and differential scanning calorimetry (DSC) as well as differential thermal analysis (DTA) techniques. Isochronal annealing experiment was performed to determine the impact of ordering on the residual electrical resistivity. The residual resistivity curve shows a sharp minimum near 250 °C indicating the on-set of ordering. The in-situ X-ray diffraction data taken for a well annealed sample shows no super lattice reflections over the investigated temperature range but the lattice parameter determined from this data shows an abrupt decrease in its value at 250 °C showing an order-disorder phase transformation (ODPT). The diffraction pattern of a sample annealed at 230 °C shows splitting of the high angle 511 fundamental reflection due to the tetragonal distortion. The peak intensity and c/a ratios are found to be 1:1.94 and 1.0028, respectively. A similar phase change was also observed during a DSC experiment around 250 °C on this alloy. The existence of these anomalies may be attributed to L1o - FCC type order-disorder phase transformation at this temperature.

References

J. C. Wataha and K. Shor, Palladium alloys for biomedical devices, Expert Rev. Med. Devices 7 (2010) 489, https://doi.org/10.1586/erd.10.25 and references therein.

C. J. Goodacre, Palladium-Silver alloys: A review of the literature, J. Prosthet. Dent. 62 (1989) 34, https://doi.org/10.1016/0022-3913(89)90043-7.

G.-T. Fu, C. Liu, Q. Zhang, Y. Chen and Y.-W. Tang, Polyhedral Palladium- Silver alloy nanocrystals as highly active and stable electrocatalysts for the formic acid oxidation reaction, Sci. Rep. 5 (2015) 13703, https://doi.org/10.1038/srep13703 and references therin.

A. G. Knapton, Palladium alloys for hydrogen diffusion membranes, Platin. Met. Rev. 21 (1977) 44.

S. Uemiya, T. Endo, R. Yoshiie, W. Katoh and T. Kojima, Fabrication of thin palladium-Silver Alloy Film by Using Electroplating Technique, Mater. Trans. 48 (2007) 1119, https://doi.org/10.2320/matertrans.48.1119.

J. Tang et al., Hydrogen adsorption and absorption on a Pd-Ag alloy surface studied using in-situ X-ray photoelectron spectroscopy under ultrahigh vacuum and ambient pressure, Appl. Surf. Sci. 463 (2019) 1161, https://doi.org/10.1016/j.apsusc.2018.07.078.

X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp, W. K. Kwok and T. Xu, Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires Formed on Filtration Membranes, Nano Lett. 11 (2011) 262, https://doi.org/10.1021/nl103682s and references therein.

H. Schmidbaur and J. L. Cihonski, Noble Metals (Chemistry), in Encyclopedia of Physical Science and Technology 3rd ed.

(Academic Press, 2003), pp. 463-492. https://doi.org/10.1016/B0-12-227410-5/00481-6.

I. karakaya and W. T. Thompson, The Ag-Pd (Silver-Palladium) System, Bull. Alloy Phase Diagr. 9 (1988) 237, https://doi.org/10.1007/BF02881271.

R. Oriani and W. K. Murphy, Thermodynamics of ordering alloys-IV, Heats of formation of some alloys of transition metals, Acta Metall. 10 (1962) 879, https://doi.org/10.1016/0001-6160(62)90102-5.

K. M. Myles, Thermodynamic properties of solid palladiumsilver alloys, Acta Metall. 13 (1966) 109, https://doi.org/10.1016/0001-6160(65)90160-4.

J. P. Chan and R. Hultgren, The thermodynamic properties of silver+palladium alloys, J. Chem. Thermodyn. 1 (1969) 45, https://doi.org/10.1016/0021-9614(69)90035-4.

D. Feng and P. Taskinen, Thermodynamic properties of silverpalladium alloys determined by a solid state electrochemical

method, J. Mater. Sci. 49 (2014) 5790, https://doi.org/10.1007/s10853-014-8310-4.

C. N. Rao and K. K. Rao, Effect of temperature on the lattice parameters of some silver- palladium alloys, Can. J. Phys. 42 (1964) 1336, https://doi.org/10.1139/p64-120.

Y. C. Venudhar, L. Iyebgar abd K. V. Krishna Rao, X-ray determination of the effect of temperature on the lattice parameters and the coefficients of thermal expansion of palladium-silvergold alloys, J. Less Common Metals 58 (1978) 55, https://doi.org/10.1016/0022-5088(78)90207-2.

E. W. Pugh and F. M. Ryan, Magnetic susceptibility of copper-nickel and silver- palladium alloys at low temperatures, Phys. Rev. 111 (1958) 1038, https://doi.org/10.1103/PhysRev.111.1038.

W. R. G. Kemp, P. G. Klemens, A. K. Sreedhar and G. K. White, The thermal and electrical conductivity of silverpalladium and silver-cadmium alloys at low temperatures, Proc. R. Soc. Lond. A 233 (1956) 480, https://doi.org/10.1098/rspa.1956.0005.

S. Muller and A. Zunger, First-principles Predictions of Yet- Unobserved Ordered Structures in the Ag-Pd Phase Diagram, Phys. Rev. Lett. 87 (2001) 165502, https://doi.org/10.1103/PhysRevLett.87.165502.

A. V. Ruban, S. I. Simak, P. A. Korzhavyi and B. Johanasson, Theoretical investigations of bulk ordering and surface segregation in Ag-Pd and other isoelectronic alloys, Phys. Rev. B 75 (2007) 054113, https://doi.org/10.1103/PhysRevB.75.054113.

M. Cui et al., AgPd nanoparticles for the electrocatalytic CO2 reduction: Bimetallic composition-dependent ligand and ensemble effects, Nanoscale 12 (2020) 14068, https://doi.org/10.1039/D0NR03203D.

A. B. Ziya, S. Atiq, A. Aziz and S. Ahmad, A study of thermal parameters of Ag50Pd50 alloy using X-ray diffraction, Physica B 406 (2011) 3335, https://doi.org/10.1016/j.physb.2011.05.055 and references therin.

W. H. plastic deformation, Anomalous behaviour of AgPd alloys on plastic deformation, Acta Metall. 5 (1957) 525, https://doi.org/10.1016/0001-6160(57)90091-3.

Downloads

Published

2022-03-01

How to Cite

[1]
G Shabbir and A. B. Ziya, “A study of order-disorder phase transformation in Ag50Pd50 alloy ”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 021002 1–, Mar. 2022.