Initial value problem for a Caputo space-time fractional Schrödinger equation for the delta potential

Authors

DOI:

https://doi.org/10.31349/RevMexFis.68.040703

Keywords:

fractional Schrodinger equation, Caputo space-time fractional derivative, Mittag-Leffler function

Abstract

In this paper, we consider a Caputo space-time fractional Schrodinger equation for the delta potential. To solve the equation, we use the ¨ joint Laplace and Fourier transforms on the spatial and time coordinates, respectively. After applying the integral transformations, we use the special initial and boundary physical conditions obtained by trial and error; these special initial conditions involve considering the initial spatial wave function in terms of the Mittag-Leffler function. Consequently, using the fractional calculus, we obtain the wave functions and corresponding eigenvalues. Finally, to verify the solution, we recover the standard case corresponding to α → 1 and β → 1.

References

A. Iomin, G. M. Zaslavsky, Quantum manifestation of Lévy-type flights in a chaotic system. Chem. Phys. 284 (2002) 3, https://doi.org/10.1016/S0301-0104(02)00532-3.

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2009) 1, https://doi.org/10-1016/S0370-1573(00)00070-3.

R. Metzler and J. Klafter, the restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 (2004) 161, https://doi.org/10.1088/0305-4470/37/31/R01.

A. Khan, T. S. Khan, M. I. Syam, and H. Khan, Analytical solutions of time fractional wave equation by double Laplace transform method. Eur. Phys. J. Plus. 134 (2019) 163, https://doi.org/10.1140/epjp/i2019-12499-y.

Z. M. Odibt, S. Momani, Approximate solutions for boundary value problems of time fractional wave equation. Appl. Math. Comput. 181 (2006) 767, https://doi.org/10.1016/j.amc.2006.02.004.

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53 (2012) 043507, https://doi.org/10.1063/1.3701574.

P. Felmer, A. Quaas, and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinb. A 142 (2012) 1237, https://doi.org/10.1017/S0308210511000746.

B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations. J. Math. Phys. 53 (2012) 15, https://doi.org/10.1063/1.4746806.

N. Laskin, Fractional Schrödinger equation. Phys. Rev. E. 66 (2002) 056108, https://doi.org/10.1103/PhysRevE.66.056108.

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in R N . J. Math. Phys. 54 (2013) 031501 https://doi.org/10.1063/1.4793990.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007) 67, https://doi.org/10.1002/cpa.20153.

W. Zhang, X. H. Tang and J. Zhang, Infinitely many radial and non-radial solutions for a fractional Schrödinger equation. Comput. Math. Appl. 71 (2016) 737, https://doi.org/10.1016/j.camwa.2015.12.036.

I. Podlubny, Fractional Differential Equations, 1st ed. (Academic Press, San Diego, 1998).

K. S. Millar, and B. Ross, An introduction to the fractional calculus and fractional differential equations, (John Wiley and Sons, New York, 1993).

K. Oldham, and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (Elsevier Science, Amsterdam, 1974)

J. Tenreiro Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1140, https://doi.org/10.1016/j.cnsns.2010.05.027.

N. Laskin, Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268 (2000) 298, https://doi.org/10.1016/S0375-9601(00)00201-2.

N. Laskin, Fractional quantum mechanics. Phys. Rev. E. 62 (2000) 3135, https://doi.org/10.1103/PhysRevE.62.3135.

N. Laskin, Fractals and quantum mechanics. Chaos. 10 (2000) 780, https://doi.org/10.1063/1.1050284.

N. Laskin, Fractional Schrödinger equation. Phys. Rev. E. 66 (2002) 056108, https://doi.org/10.1103/PhysRevE.66.056108.

S. S¸. Bayin, On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 53 (2012) 042105, https://doi.org/10.1063/1.4705268.

X. Guo and, M. Xu, Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47 (2006) 082104, https://doi.org/10.1063/1.2235026.

M. Jeng, S.-L.-Y. Xu, E. Hawkins, and J. M. Schwarz, On the locality of the fractional Schrödinger equation. J. Math. Phys. 51 (2010) 062102, https://doi.org/10.1063/1.3430552.

E. K. Lenzi, B. F. de Oliveira, L. R. da Silva, and L. R. Evangelista, Solutions for a Schrödinger equation with a nonlocal term. J. Math. Phys. 49 (2008) 032108, https://doi.org/10.1063/1.2842069.

M. Naber, Time fractional Schrödinger equation. J. Math. Phys. 45 (2004) 3339, https://doi.org/10.1063/1.1769611.

A. Iomin, Fractional-time quantum mechanics. Phys. Rev. E. 80 (2009) 022103, https://doi.org/10.1103/PhysRevE.80022103.

A. Iomin, Fractional-time Schrödinger equation: Fractional dynamics on a comb. Chaos, Solitons & Fractals. 44 (2011) 348, https://doi.org/10.1016/j.chaos.2011.03.005.

J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Phys. 344 (2008) 1005, https://doi.org/10.1016/j.jmaa.2008.03.061.

S. Wang and, M. Xu, Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48 (2007) 043502, https://doi.org/10.1063/1.2716203.

A. Patra, Similarity analytical solutions for the Schrödinger equation with the Riesz fractional derivative in quantum mechanics. Mathematical methods in the applied sciences. 43 (2020) 10287, https://doi.org/10.1002/mma.6695.

A. Ashyralyev, B. Hicdurmaz, On the numerical solution of fractional Schrödinger differential equations with the Dirichlet condition. Int. J. Comput. Math. 89 (2012) 1927, https://doi.org/10.1080/00207160.2012.698841.

A. Khan, M. I. Syam, A. Zada and, H. Khan, Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives. Eur. Phys. J. Plus. 133 (2018) 264, https://doi.org/10.1140/epjp/i2018-12119-6.

A. Khan, J. F. Gómez-Aguilar, T. S. Khan and, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos, Solitons & Fractals. 122 (2019) 119, https://doi.org/10.1016/j.chaos.2019.03.022.

E. C. de Oliveira, F. Silva Costa, J. Vaz, The fractional Schrödinger equation for delta potentials. J. Math. Phys. 51 (2010) 123517, https://doi.org/10.1063/1.3525976.

L. Debnath, Integral Transform and Their Applications, (CRC Press: Boca Raton, 1995).

T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971) 7.

R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, MittagLeffler Functions: Related Topics and Applications, (SpringerVerlag, Berlin-Heidelberg, 2014), https://doi.org/10.1007/978-3-662-43930-2.

A. M. Mathai, R. K. Saxena, H. J. Haubold, The H-function: Theory and Applications, (Springer, New York, 2009).

A. M. Mathai, R. K. Saxena, The H-function with applications in statistics and other disciplines, (John Wiley and Sons, New York, 1978). https://doi.org/10.2307/1267776.

H. M. Srivastava, K. C. Gupta, S. P. Goyal , The H-function of one and two variables with applications, (South Asian Publishers, New Delhi, 1982).

S. S¸. Bayin, Time fractional Schrödinger equation: Fox’s H- functions and the effective potential. J. Math. Phys. 54 (2013) 012103, https://doi.org/10.1063/1.4773100.

Downloads

Published

2022-06-07

How to Cite

[1]
S. . Saberhaghparvar and H. Panahi, “Initial value problem for a Caputo space-time fractional Schrödinger equation for the delta potential”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040703 1–, Jun. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory