A complementary covariant approach to gravito-electromagnetism


  • Sergio Giardino UFRGS: Universidade Federal do Rio Grande do Sul




classical general relativity, fundamental problems and general formalism, modified theories of gravity


From a previous paper where we proposed a description of general relativity within the gravito-electromagnetic limit, we propose an alternative modified gravitational theory. As in the former version, we analyze the vector and tensor equations of motion, the gravitational continuity equation, the conservation of the energy, the energy-momentum tensor, the field tensor, and the constraints concerning these fields. The Lagrangian formulation is also exhibited as an unified and simple formulation that will be useful for future investigation.


C. Corda, Interferometric detection of gravitational waves: the definitive test for General Relativity. Int. J. Mod. Phys. D18 (2009) 2275, https://doi.org/10.1142/S0218271809015904.

S. Giardino, A novel covariant approach to gravitoelectromagnetism. Braz. J. Phys. 50 (2020) 372, https://doi.org/10.1007/s13538-020-00746-x.

H. Ohanian; R. Ruffini. Gravitation and space-time. (Cambridge University Press, Cambridge, 2013),

W. B. Campbell; T. Morgan, Debye Potentials for the Gravitational Field. Physica, 53 (1971) 264, https://doi.org/10.1016/0031-8914(71)90074-7.

W. B. Campbell, The linear theory of gravitation in the radiation gauge. Gen. Rel. Grav. 4 (1973) 137, https://doi.org/10.1007/BF00762800.

W. B. Campbell; T. Morgan, Maxwell form of the linear theory of gravitation. Am. J. Phys. 44 (1976) 356, https://doi.org/10.1119/1.10195.

W. B. Campbell; J. Macek; T. A. Morgan, Relativistic Time Dependent Multipole Analysis for Scalar, Electromagnetic, and Gravitational Fields. Phys. Rev. D 15 (1977) 2156, https://doi.org/10.1103/PhysRevD.15.2156

J. Ramos; M. Montigny; F. C. Khanna, On a Lagrangian formulation of gravitoelectromagnetism. Gen. Rel. Grav. 42 (2010) 2403, https://doi.org/10.1007/s10714-010-0990-8.

A. Crisan; C. Godinho; I. Vancea, Gravitoelectromagnetic knot fields. Universe 7 (2021) 46, https://doi.org/10.3390/universe7030046.

H. Behera; N. Barik, A New Set of Maxwell-Lorentz Equations and Rediscovery of Heaviside-Maxwellian (Vector) Gravity from Quantum Field Theory, arXiv:1810.04791.

H. Behera; N. Barik, Explanation of Gravity Probe B Experimental Results using Heaviside-Maxwellian (Vector) Gravity in Flat Space-time, arXiv:2002.12124.

M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J., 270 (1983) 365. https://doi.org/10.1086/161130.

E. Fischbach and C. L. Talmadge, The search for nonNewtonian gravity. (Springer, New York, 1999), https://doi.org/10.1007/978-1-4612-1438-0.

M. Milgrom, MOND theory, Can. J. Phys. 93 (2015) 107. https://doi.org/10.1139/cjp-2014-0211.

C. W. F. Everitt et al., The Gravity Probe B test of general relativity. Class. Quantum Grav. 32 (2015) 224001. https://doi.org/10.1088/0264-9381/32/22/224001.




How to Cite

S. Giardino, “A complementary covariant approach to gravito-electromagnetism”, Rev. Mex. Fís., vol. 68, no. 1 Jan-Feb, pp. 010702 1–, Jan. 2022.



07 Gravitation, Mathematical Physics and Field Theory