An experimental setup to generate narrowband bi-photons via four-wave mixing in cold atoms


  • N. Arias-Tellez Instituto de Física, UNAM
  • I. F. Angeles-Aguillón Instituto de Física, UNAM
  • D. Martínez-Cara Instituto de Física, UNAM
  • A. Martínez-Vallejo Instituto de Física, UNAM
  • L. Y. Villegas Aguilar Instituto de Física, UNAM
  • L. A. Mendoza-López Instituto de Física, UNAM
  • Y. M. Torres Instituto de Física, UNAM
  • R. A. Gutiérrez-Arenas Instituto de Física, UNAM
  • R. Jáuregui Instituto de Física, UNAM
  • I. Pérez-Castillo UAM-Iztapalapa
  • A. Ceré Center for Quantum Technologies
  • Daniel Sahagún Sánchez Instituto de Física, U. N. A. M.



cold atoms, bi-photons, quantum optics, complete quantum systems, four-wave mixing


We present our recently-built experimental setup designed to generate near-infrared and narrow-band correlated photon pairs by inducingfour-wave mixing in a cold gas of 87Rb atoms confined in a magneto-optical trap. The experimental setup and its automation and control approach are described in detail. A characterization of the optical density of the atomic ensemble as well as the basic statistical measurements of the generated light are reported. The non-classical nature of the photons pairs is confirmed by observing a violation of Cauchy-Schwarz inequality by a factor of 5.6 × 10 in a Hanbury Brown – Twiss interferometer. A 1/e coherence time for the heralded, idler photons of 4.4 ± 0.1 ns is estimated from our observations. We are able to achieve a value of 10s−1pair-detection-rate, which results in a spectral brightness of 280 (MHz s)−1. The combination of high brightness and narrow-band spectrum makes this photon-pair source a viable tool in fundamental studies of quantum states and opens the door to use them in quantum technologies.


D. C. Burnham and D. L. Weinberg, Physical ReviewLetters25, 84 (1970).

S. J. Freedman and J. F. Clauser, Physical Review Let-ters28, 938 (1972).

J. P. Dowling and G. J. Milburn, Philosophical Transac-tions of the Royal Society of London. Series A: Mathe-matical, Physical and Engineering Sciences (2003).

C. Couteau, Contemporary Physics59, 291 (2018).

A. Aspect, P. Grangier, and G. Roger, Physical ReviewLetters49, 91 (1982).

L. M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature414,, 413 (2001).

Y.-W. Cho, G. Campbell, J. Everett, J. Bernu, D. Hig-ginbottom, M. Cao, J. Geng, N. Robins, P. Lam, andB. Buchler, Optica3, 100 (2016).[8] J. Guo, X. Feng, P. Yang, Z. Yu, L. Chen, C.-H. Yuan,and W. Zhang, Nature Communications10, 1 (2019).

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, andP. Zoller, Physica Scripta2009, 014001 (2009).

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Pet-rosyan, P. Rabl, and J. Schmiedmayer, Proceedings ofthe National Academy of Sciences of United States ofAmerica112, 3866 (2015).

A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou,L.-M. Duan, and H. Kimble, Nature423, 731 (2003).

J. K. Thompson, J. Simon, H. Loh, and V. Vuleti ́c, Sci-ence313, 74 (2006).

T. Chaneliere, D. Matsukevich, S. Jenkins, T. Kennedy,M. Chapman, and A. Kuzmich, Physical Review Let-ters96, 093604 (2006).

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E.Harris, Physical Review Letters100, 183603 (2008).

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov,D. Matsukevich, and C. Kurtsiefer, Physical ReviewLetters111, 123602 (2013).[16] M. A. Seidler, X. J. Yeo, A. Cerè, and C. Kurtsiefer,Physical Review Letters125, 183603 (2020).

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L.Rolston, Optics Express19, 14632 (2011).

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, andC. Kurtsiefer, New Journal of Physics17, 093034(2015).

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, Physical ReviewLetters122, 123607 (2019).

J. Wen and M. H. Rubin, Physical Review A74, 023808(2006).

M. O. Scully and M. S. Zubairy, “Quantum optics,”(1999).

C. A. Kocher, Annals of Physics65, 1 (1971).

C. Stroud Jr, J. Eberly, W. Lama, and L. Mandel, Physical Review A5, 1094 (1972).

D. Sahagun, V. Bolpasi, and W. von Klitzing, OpticsCommunications290, 110 (2013).

P. K. Mandal, V. Naik, V. Dev, A. Chakrabarti, and A. Ray, Applied Optics 57, 3612 (2018).

T. T. Grove, V. Sanchez-Villicana, B. Duncan,S. Maleki,and P. Gould, Physica Scripta 52, 271(1995).

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod,E. Tarleton, and I. G. Hughes, Physical Review A73,062509 (2006).

D. J. Thompson and R. E. Scholten, Review of Scien-tific Instruments83, 023107 (2012).

R. Barger and J. Hall, Physical Review Letters22, 4(1969).

H. Jen, Journal of Physics B: Atomic, Molecular andOptical Physics45, 165504 (2012).

H.J.MetcalfandP.V.derStraten,Laser Cooling and Trapping (Springer, 2002).

D. A. Steck, available online (revision 2.2.2, 9 July2021).

Atom Optics Laboratory, University of Texas at Austin,A Laboratory Control System for Cold Atom Experiments(2015, [accessed 2020 Aug 20]).

European Laboratory for Non-Linear Spectroscopy,DIO128-Board Based Aquisition System (2005, [ac-cessed 2020 Aug 20]).

M. Senn,Sinara hardware. 2020. M-Labs ([accessed2020 Aug 20]).

LabJack Corporation, “T7,” ([accessed 2021 March24]).

LabJack Corporation, “Stream mode,” ([accessed 2021July 1]).

R. A. Gutierrez-Arenas, “Labjack T7 BNC terminalboard and code,” (2021).

L. Y. Villegas-Aguilar, “pyid800: A Python interfacefor the ID800 time-tagger,” (2020).

R. Willis, F. Becerra, L. Orozco, and S. Rolston, Phys-ical Review A79, 033814 (2009).

A. Cerè, B. Srivathsan, G. K. Gulati, B. Chng, andC. Kurtsiefer, Physical Review A98, 023835 (2018).

N. E. Rehler and J. H. Eberly, Physical Review A3,1735 (1971).

H. Carmichael,Statistical Methods in Quantum Optics(Springer Science & Business Media, 2013).

M. Reid and D. Walls, Physical Review A34, 1260(1986).

Felinto, D, Borba, G C, Tabosa, J W R, de Oliveira, RA, Barreiro, S, and Martins, W S, Optics Letters40, 4939 (2015).




How to Cite

N. Arias-Tellez, “An experimental setup to generate narrowband bi-photons via four-wave mixing in cold atoms”, Rev. Mex. Fís., vol. 68, no. 3 May-Jun, pp. 031303 1–, May 2022.