Optical response of dielectric&metal-core/metal-shell nanoparticles: Near electromagnetic field and resonance frequencies
DOI:
https://doi.org/10.31349/RevMexFis.68.031302Keywords:
Core/shell nanoparticle, scattering cross section, resonance frequencies, quasi-static limitAbstract
We study the diffraction of a monochromatic electromagnetic plane wave by a dielectric&metal-core/metal-shell nanoparticle surrounded by a dielectric medium. This problem was solved by using generalized Mie’s theory and both the scattering cross section and the square module of the electric field were calculated as a function of shell thickness. Numerically, the first particles studied were gold-core/silver-shell nanoparticles and their inverse configuration. The gold-core/silver-shell particle presented more variation of their optical properties. The second particles were vacuum-core/metal-shell surrounded by vacuum, symmetric configurations. In this case, the dispersive Drude dielectric function for the metal was used, and a comparative study between the positions of the resonance frequencies obtained from quasi-static limit and electrodynamic theory was performed. Thus, consequently the formula obtained from the quasi-static limit can be used to calculate the positions of the resonance frequencies instead of the electrodynamic theory, when the external radius is smaller than 20 nm.
References
G. Mie, Beitrage zur optik tr ¨ uber medien, speziell kolloidaler metallosungen, ¨ Annalen der physik, 330 (1908) 377.
A. L. Aden and M. Kerker, Scattering of electromagnetic waves from two concentric spheres, Journal of Applied Physics, 22 (1951) 1242. https://doi.org/10.1063/1.1699834.
Y. Nomura and K. Takaku, On the propagation of the electromagnetic waves in an inhomogeneous atmosphere, Journal of the Physical Society of Japan, 10 (1955) 700. https://doi.org/10.1143/JPSJ.10.700.
C.-T. Tai, The electromagnetic theory of the spherical luneberg lens, Applied Scientific Research, Section B, 7 (1959) 113.
https://doi.org/10.1007/BF02921903.
J. R. Wait, Electromagnetic scattering from a radially inhomogeneous sphere, Applied Scientific Research, Section B, 10 (1962) 441. https://doi.org/10.1007/BF02923455.
R. W. Fenn and H. Oser, Scattering properties of concentric soot-water spheres for visible and infrared light, Applied Optics, 4 (1965) 1504. https://doi.org/10.1364/AO.4.001504.
W. Espenscheid, E. Willis, E. Matijevic, and M. Kerker, Aerosol studies by light scattering iv. preparation and particle size distribution of aerosols consisting of concentric spheres, J. colloid science, 20 (1965) 501. https://doi.org/10.1016/0095-8522(65)90032-2.
M. Kerker, The scattering of light, and other electromagnetic radiation, (academic press, New York, 1969).
G. W. Kattawar and D. A. Hood, Electromagnetic scattering from a spherical polydispersion of coated spheres, Applied optics, 15 (1976) 1996. https://doi.org/10.1364/AO.15.001996.
T. P. Ackerman and O. B. Toon, Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles, Applied optics, 20 (1981) 3661. https://doi.org/10.1364/AO.20.003661.
M. Kerker, J. Kratohvil, and E. Matijevic, Light scattering functions for concentric spheres. total scattering coefficients, m 1= 2.1050, m 2= 1.4821, JOSA, 52 (1962) 551. https://doi.org/10.1364/JOSA.52.000551.
D. Bohren, Huffman, Absorption and scattering of light by small particles, (John Willey & Sons, New York, 1983).
O. B. Toon and T. Ackerman, Algorithms for the calculation of scattering by stratified spheres, Applied Optics, 20 (1981) 3657,
https://doi.org/10.1364/AO.20.003657.
R. Bhandari, Scattering coefficients for a multilayered sphere: analytic expressions and algorithms, Applied optics, 24 (1985)
, https://doi.org/10.1364/AO.24.001960.
D. Mackowski, R. Altenkirch, and M. Menguc, Internal absorption cross sections in a stratified sphere, Applied Optics, 29 (1990) 1551, https://doi.org/10.1364/AO.29.001551.
S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, Nanoengineering of optical resonances, Chemical Physics Letters, 288 (1998) 243, https://doi.org/10.1016/S0009-2614(98)00277-2.
N. Harris, M. J. Ford, and M. B. Cortie, Optimization of plasmonic heating by gold nanospheres and nanoshells, The Journal of Physical Chemistry B, 110 (2006) 10701, https://doi.org/10.1021/jp0606208.
C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, Scattering spectra of single gold nanoshells, Nano Letters, 4 (2004) 2355, https://doi.org/10.1021/nl048610a.
H. Zhou, I. Honma, H. Komiyama, and J. Haus, Controlled synthesis and quantum-size effect in gold-coated nanoparticles, Phys. Rev. B, 50 (1994) 12052, https://doi.org/10.1103/PhysRevB.50.12052.
M. Kerker and C. Blatchford, Elastic scattering, absorption, and surface-enhanced raman scattering by concentric spheres comprised of a metallic and a dielectric region, Phys. Rev. B, 26 (1982) 4052, https://doi.org/10.1103/PhysRevB.26.4052.
A. E. Neeves and M. H. Birnboim, Composite structures for the enhancement of nonlinear-optical susceptibility, JOSA B, 6 (1989) 787, https://doi.org/10.1364/JOSAB.6.000787.
R. Averitt, D. Sarkar, and N. Halas, Plasmon resonance shifts of au-coated au 2 s nanoshells: insight into multicomponent nanoparticle growth, Phys. Rev. Lett., 78 (1997) 4217, https://doi.org/10.1103/PhysRevLett.78.4217.
Z. Wang, X. Quan, Z. Zhang, and P. Cheng, Optical absorption of carbon-gold core-shell nanoparticles, Journal of Quantitative Spectroscopy and Radiative Transfer, 205 (2018) 291, https://doi.org/10.1016/j.jqsrt.2017.08.001.
B. J. Lee, K. Park, T. Walsh, and L. Xu, Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption, Journal of solar energy engineering, 134 (2012) 021009, https://doi.org/10.1115/1.4005756.
W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, Multifunctional core-shell nanoparticle suspensions for efficient absorption, Journal of solar energy engineering, 135 (2013) 021004, https://doi.org/10.1115/1.4007845.
U. Kreibig and M. Vollmer, Optical properties of metal clusters. (Springer Series in Materials Science, Berlin. 1995).
H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping, Phys. Rev. B, 48 (1993) 18178, https://doi.org/10.1103/PhysRevB.48.18178.
Y. Kim, R. C. Johnson, J. Li, J. T. Hupp, and G. C. Schatz, Synthesis, linear extinction, and preliminary resonant hyperrayleigh scattering studies of gold-core/silver-shell nanoparticles: comparisons of theory and experiment, Chemical physics letters, 352 (2002) 421, https://doi.org/10.1016/S0009-2614(01)01506-8.
B. J. Messinger, K. U. Von Raben, R. K. Chang, and P. W. Barber, Local fields at the surface of noble-metal microspheres, Physical Review B, 24 (1981) 649, https://doi.org/10.1103/PhysRevB.24.649.
E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, Optical properties of metal nanoshells, The Journal of Physical Chemistry B, 108 (2004) 1224, https://doi.org/10.1021/jp036301n.
C. Zhang, B.-Q. Chen, Z.-Y. Li, Y. Xia, and Y.-G. Chen, Surface plasmon resonance in bimetallic core-shell nanoparticles, The Journal of Physical Chemistry C, 119 (2015) 16836, https://doi.org/10.1021/acs.jpcc.5b04232.
R. Rodr´ıguez-Mijangos and R. Garc´ıa-Llamas, Modos electromagneticos en esferas met´alicas; plasmones en micro y nanopart´ıculas, Rev. Mex. Fis. E, 64 (2018) 154.
J. D. Jackson, Classical electrodynamics. (American Association of Physics Teachers, 1999).
R. Rodr´ıguez-Mijangos and R. Garc´ıa-Llamas, Difraccion de luz por esferas dielectricas: micro-y nano-particulas, Rev. Mex
Fis, 62 (2016) 51.
E. D. Palik, Handbook of optical constants of solids. (Academic press, 1998).
O. Pena-Rodr ˜ ´ıguez and U. Pal, Au @ Ag core-shell nanoparticles: efficient all-plasmonic fano-resonance generators,
Nanoscale, 3 (2011) 3609, https://doi.org/10.1039/C1NR10625B.
L. Lu, G. Burkey, I. Halaciuga, and D. V. Goia, Coreshell gold/silver nanoparticles: Synthesis and optical properties, Journal of colloid and interface science, 392 (2013) 90. https://doi.org/10.1016/j.jcis.2012.09.057.
P. B. Johnson and R.-W. Christy, Optical constants of the noble metals, Physical review B, 6 (1972) 4370, https://doi.org/10.1103/PhysRevB.6.4370.
L. R. Allain and T. Vo-Dinh, Surface-enhanced raman scattering detection of the breast cancer susceptibility gene brca1 using a silver-coated microarray platform, Analytica Chimica Acta, 469 (2002) 149, https://doi.org/10.1016/S0003-2670(01)01537-9.
S. McCall, P. Platzman, and P. Wolff, Surface enhanced raman scattering, Phys. Lett. A, 77 (1980) 381, https://doi.org/10.1016/0375-9601(80)90726-4.
A. Zada et al., Surface plasmonicassisted photocatalysis and optoelectronic devices with noble metal nanocrystals: Design, synthesis, and applications, Advanced Functional Materials, 30 (2020) 1906744, https://doi.org/10.1002/adfm.201906744.
A. Glass, P. F. Liao, J. Bergman, and D. Olson, Interaction of metal particles with adsorbed dye molecules: absorption and
luminescence, Optics Letters, 5 (1980) 368, https://doi.org/10.1364/OL.5.000368.
V. I. Emel’yanov and N. I. Koroteev, Giant raman scattering of light by molecules adsorbed on the surface of a metal, Soviet
Physics Uspekhi, 24 (1981) 864, https://doi.org/10.1070/PU1981v024n10ABEH004812.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Osnaider Rocha Rocha, S. Gastélum-Acuña, M. Flores-Acosta, R. García-Llamas
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.