Constants of motion associated with canonoid transformations for non-autonomous systems

Authors

DOI:

https://doi.org/10.31349/RevMexFis.68.020706

Keywords:

Integrable systems, non-autonomous systems, canonoid transformations, Nijenhuis torsion tensor

Abstract

We consider non-autonomous systems of ordinary differential equations that can be expressed in Hamiltonian form in terms of two different coordinate systems, not related by a canonical transformation. We show that the relationship between these coordinate systems leads to a, possibly time-dependent, tensor field, $S^{\alpha}_{\beta}$, whose eigenvalues are constants of motion. We prove that if the Nijenhuis torsion tensor of $S^{\alpha}_{\beta}$ is equal to zero then the eigenvalues of $S^{\alpha}_{\beta}$ are in involution, and that these eigenvalues may be in involution even if the Nijenhuis tensor is not zero.

References

O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems (Cambridge Monographs on Mathematical Physics). (Cambridge University Press, New York, 2003). https://doi.org/10.1017/CBO9780511535024

V. Arnold, V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed. (Springer-Verlag,

Berlin, Heidelberg, 2006). https://doi.org/10.1007/978-3-540-48926-9

V.S. Gerdjikov, G. Vilasi and A.B. Yanovski. Integrable Hamiltonian Hierarchies, Lect. Notes Phys. 748. (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-77054-1

F. Magri and C. Morosi, Quaderno S 19, Universita degli Studi di Milano (1984).

F. Magri, J. Math. Phys. 19 (1978) 1156-1162. https://doi.org/10.1063/1.523777

A. Das, Integrable Models. (World Scientific, Singapore, 1989). https://doi.org/10.1142/0858

R. Brouzet, J. Math. Phys. 34 (1993) 1309. https://doi.org/10.1063/1.530212

G. Rastelli and M. Santoprete, Journal of Geometric Mechanics

(2015) 4. https://doi.org/10.3934/jgm.2015.7.483

L.J. Negri, L.C. Oliveira, and J.M. Teixeira, J. Math. Phys. 28 (1987) 2369. https://doi.org/10.1063/1.527772

J.F. Carinena, F. Falceto and M.F. Ra ˜ nada, ˜ Journal of Geometric Mechanics 5 (2013) 151. https://doi.org/10.3934/jgm.2013.5.151

J.F. Carinena and M.F. Ra ˜ nada, ˜ J. Math. Phys. 30 (1989) 2258. https://doi.org/10.1063/1.528552

G.F. Torres del Castillo, Differentiable Manifolds: A Theoretical Physics Approach, 2nd ed. (Birkhauser, Cham, 2020). https://doi.org/10.1007/978-3-030-45193-6

G.F. Torres del Castillo, An Introduction to Hamiltonian Mechanics (Birkhauser, Cham, 2018). ¨ https://doi.org/10.1007/978-3-319-95225-3

Y. Kosmann-Schwarzbach and F. Magri, J. Math. Phys. 37 (1996) 6173. https://doi.org/10.1063/1.531771

H. Eves, Elementary Matrix Theory (Dover, New York, 1980). Sect. 3.6A.

Y. Kosmann-Schwarzbach, in: P. Kielanowski, A. Odzijewicz and E. Previato (eds) Geometric Methods in Physics XXXVI (Birkhauser, Cham, 2019). ¨ https://doi.org/10.1007/978-3-030-01156-7 18

P. Tempesta and G. Tondo, Annali di Matematica (2021). https://doi.org/10.1007/s10231-021-01107-4

Downloads

Published

2022-03-01

How to Cite

[1]
G. F. Torres del Castillo and R. . Azuaje, “Constants of motion associated with canonoid transformations for non-autonomous systems”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 020706 1–, Mar. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory