Approximate fractal morphometry of spherical type essential oil microemulsions: A simple model


  • Julio Cesar Campos García Universidad de Sonora
  • L. Quihui-Cota Centro de Investigación en Alimentación y Desarrollo
  • O. R. Gómez-Aldama Universidad de Sonora
  • M. A. López-Mata Universidad de Sonora
  • R. G. Valdez-Melchor Universidad de Sonora



Microemulsions of oil essentials, Spherical micelles, Continuous fractal models, Geometry and topology


In the present study, the approximate fractal morphometry of spherical-type essential oil microemulsions was performed. The geometric fractal characterization was carried out by a recently published continuous half-fractal model which allowed to model microemulsions as systems in their stable thermodynamic equilibrium phase with high degree of homogeneity. Regarding the characteristic of high homogeneity an equation was obtained to roughly describe the volume fractal dimension and the fractal volume of two special cases elaborated from Rosmarinus officinalis and Melaleuca alternifolia previously investigated. In addition, referring to the characteristic of high homogeneity, it was possible to approximate the fractal dimension of area and the fractal area for each microemulsion. Our numerical estimates showed coherence with the principles of Hausdorff-Besicovitch geometry and with the experimental evidence about the physical dimension as a non-integer dimension.

Author Biography

Julio Cesar Campos García, Universidad de Sonora

Departamento de Ciencias de la Salud

Maestro de Tiempo Completo Indeterminado

Asociado D


S. Burt, Essential oils: their antibacterial properties and potential applications in foods-a review, Int. J. Food Microbiol. 94 (2004) 223-253, doi: 10.1016/j.ijfoodmicro.2004.03.022.

O. Koul, S. Walia and G. S. Dhaliwal, Essential oils as Green Pesticides: Potential and Constraints, Biopestic. Int. 4(1) (2008) 63-84, 0973-483X/08/63-84©2008.

S. P. Moulik and A. K. Rakshit, Physicochemistry and Applications of Microemulsions, J. Surface Sci. Technol. 22 (2006) 159-186, DOI: 10.18311/jsst/2006/1965.

A. Marchese, R. Barbieri, E. Coppo, et al., Antimicrobial activity of eugenol and essential oils Containing eugenol: A mechanistic viewpoint, Crit. Rev. Microbiol. 43 (2017) 668-689, doi: 10.1080/1040841X.2017.1295225.

G. Tartaro, H. Mateos, D. Schirone, R. Angelico and G. Palazzo, Microemulsion Microstructure (s): A tutorial Review, Nanomaterials 10 (2020) 1657, doi: 10.3390/nano10091657.

G. Bonacucina, M. Cespi, M. MisiciFalzi, G. F. Palmieri, Colloidal Soft Matter as Drug Delivery System, J. Pharm. Sci. 98 (2009) 1-42, doi: 10.1002/jps.21423.

K. A. Dawson, Lattice Models of Amphiphilic Assembly, (Springer Netherlands, Dordrecht, 1992), pp. 256-323, doi: 10.1007/978-94-011-2540-6_13.

B. Widom, Lattice model of microemulsions, J. Chem. Phys. 84 (1986) 6943-6954. Doi: 10.1063/1.450615.

B. Widom, II. Theoretical modeling: An introduction, Berichte der Bunsengesellschaft Für Physikalishe Chemie 100 (1996) 242-251,

G. Gompper, M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett. 65 (1990) 1116-1119,

E. García Armenta, L. A. Picos Corrales, G. F. Gutiérrez López, et al., Preparation of Surfactant-free emulsions using amarant starch modified by reactive extrusion, Colloids Surf A Physicochem. Eng. Asp., 608 (2021) 125550,

Y. Feldeman, N. Kozlovich, Y. Alexandrov, R. Nigmatullin and Y. Ryabov, Mechanism of the cooperative relaxation in microemulsiones near percolation threshold, Phys. Rev. E 54 (1996), 5420-5427,

Y. Feldman, N. Koslovich, I. Nir and N. Garti, Dielectric spectroscopy of microemulsiones, Colloids Surf A Physicochem. Eng. Asp., 128 (1997) 47-61, DOI: 10.1016/S0927-7757(96)03909-X

C. Cano-Sarmiento, A. Monroy-Villagrana, L. Alamilla-Beltran, et al., Micromorphometric Characteristics of α-Tocopherol Emulsions Obtained By Microfluidization, Rev. Mex. Ing. Quim., 13 (2014) 201-212,

M. A. López-Mata, E. Valbuena-Gregorio, et al., Efecto de Microemulsiones de Aceites Esenciales Sobre el Eritrocito Humano y Bacterias Patógenas. RMIB, 38 (2017) 238-245,

J. L. Salager, Formulación, composición y fabricación de emulsiones para obtener las propiedades deseadas. Escuela de Ingeniería Química de la ULA, Universidad de los Andes, (Part B. Versión 2 1999) 1-43.

R. L. Reed and R. N. Healy, Some Physicochemical Aspects of Microemulsion Flooding: A Review, Reprinted from: Improved Oil Recovery by Surfactant and Polymer Flooding, D. O. Shah and R. S. Schecheter, (Eds. Academic Press 1977) 347-383.

V. E. Tarasov, Continuous medium model for fractal media, Phys. Lett. A., 336 (2005) 167-174, doi:10.1016/j.physleta.2005.01.024.

V. E. Tarasov, Anisotropic fractal media by vector calculus in non-integer dimensional space, J. Math. Phys., 55 (2014) 083510,

Wolfram Research, Inc., wolfram | (Alpha Notebook Edition, Champaign, IL 2020).

W. Hurewicz & H. Wallman, Dimension Theory. 1941, (Princeton University Press Edition: Reprint 8 December 2015), chapter VIII.

F. Laroche, Escapades arithmétiques, (Ellipses Editorial 2010) 475.

The Math Works, Inc. (2018). MATLAB (Version R2018b) [Computer software]. .

V. E. Tarasov, Vector Calculus in non-integer dimensional space and its applications to fractal media, Commun Nonlinear Sci Numer Simulat, 20 (2015) 360-374,

A. J. Wilson, Volume of n-dimensional ellipsoid, SAX, 1 (2010) 101-106.

S. I. Muslih, D. Baleanu and E. M. Rabei, Gravitational potential in fractional space, CEJP, 5 (2007) 285-292,

C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, (Freeman, San Francisco, 1973), 1304.




How to Cite

J. C. C. García, L. Quihui-Cota, O. R. Gómez-Aldama, M. A. López-Mata, and R. G. Valdez-Melchor, “Approximate fractal morphometry of spherical type essential oil microemulsions: A simple model”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 051401 1–, Aug. 2022.



14 Other areas in Physics