Structural, mechanical, electronic, and thermoelectric properties of new semiconducting d0 quaternary Heusler compounds CaKNaZ (Z =Si, Ge, Sn). A density functional theory study

Authors

  • Slimane Gheriballah University of Sidi Bel-Abbes
  • A. Chahed University of Sidi Bel-Abbes
  • Y. Benazzouzi University of Sidi Bel-Abbes
  • H. Rozale University of Sidi Bel-Abbes

DOI:

https://doi.org/10.31349/RevMexFis.68.050501

Keywords:

ab initio calculations, quaternary Heusler compounds, semiconductors, thermoelectric properties, Density Functional Theory (DFT), Full Potential Linearized Augmented Plane Wave (FPLAPW)

Abstract

Due to the increasing demand for energy, the development of new and good thermoelectric (TE) materials is very vital. In this study, with ab initio calculations, based on the density functional theory (DFT) using the self-consistent full potential linearized augmented plane wave (FPLAPW) method were performed to explore the structural, mechanical, electronic and thermoelectric properties of quaternary alloys CaKNaZ (Z = Si, Ge, Sn) with quaternary Heusler structure. optimization confirmed the most stable structure for CaKNaZ (Z = Si, Ge, Sn) compounds is Y1-type in the non-magnetic phase. All of the compounds have been shown to behave like semiconductors, with indirect band gaps of 0.82 and 0.69 for CaKNaSi, CaKNaSn respectively, and direct band gap of 0.46 for CaKNaGe. The theoretical study of thermoelectric properties for CaKNaZ (Z = Si, Ge, Sn) was carried out by Boltzmann theory as implemented in BoltzTraP code. we have obtained a high of figure of merit at moderate temperatures. This indicates that the studied alloys can be used in thermoelectric applications.

References

B. G. Levi, Simple compound manifests record-high thermoelectric performance. Phys. Today. 67 (2014) 14. https://doi.org/10.1063/PT.3.2404.

R. A. Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, New Class of Materials: Half-Metallic Ferromagnets. Phys. Rev. Lett. 50 (1983) 2024. https://doi.org/10.1103/PhysRevLett.50.2024.

M. Julliere, Tunneling between ferromagnetic films. Phys. Lett. A 54 (1975) 225-226. https://doi.org/10.1016/0375-9601(75)90174-7.

V. A. Dinh, K. Sato, H. Katayama-Yoshida, Half-Metallicity and High Tc Ferromagnetism in Si-containing Half-Heusler Alloys. J Supercond. Nov. Magn. 23 (2010) 79-82. https://dx.doi.org/10.1007/s10948-009-0569-3.

L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bull. 76 (2016) 107, https://doi.org/10.1016/J.MATERRESBULL.2015.11.032.

D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-IIV half-Heusler compounds for optoelectronics: Ab initio calculations. Phys. Rev. B 81 (2010) 075208, https://doi.org/10.1103/PhysRevB.81.075208.

E. Enamullah and P.-R. Cha, The n- and p-type thermoelectric response of a semiconducting Co-based quaternary Heusler alloy: a density functional approach. J. Mater. Chem. C. 7 (2019) 7664. https://doi.org/10.1039/C9TC00570F.

M. Mushtaq, M. Atiff Sattar, and S. Ahmad Dar, Phonon phase stability, structural, mechanical, electronic, and thermoelectric properties of tow new semiconducting quaternary Heusler alloys CoCuZrZ (Z=Ge and Sn). Int. J. Energy Res. 44 (2020) 5936, https://doi.org/10.1002/er.5373.

J. He, S. Shahab Naghavi, V. I. Hegde, M. Amsler, and C. Wolverton, Designing and Discovering a New Family of Semiconducting Quaternary Heusler Compounds Based on the 18- Electron Rule. Chem. Mater. 30 (2018) 4978, https://doi.org/10.1021/acs.chemmater.8b01096.

J. Du et al., First-principles study on the half-metallic properties of the d0 quaternary Heusler compounds: KCaCBr and KCaCI. AIP Adv. 6 (2016) 105308. https://dx.doi.org/10.1063/1.4966143.

J. Du et al., Half-metallic ferromagnetic features in d0 quaternary-Heusler compounds KCaCF and KCaCCl: A first-principles description. J. Magn. Magn. Mater. 428 (2017) 250-254. https://doi.org/10.1016/j.jmmm.2016.12.038.

J. Du et al., Half-metallic ferromagnetism in KCaNX (X=O, S, and Se) quaternary Heusler compounds: A first-principles study. Superlattices Microstruct. 105 (2017) 39, https://doi.org/10.1016/j.spmi.2016.12.055.

A. Bouabc¸a et al., First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb), J. Magn. Magn. Mater. 419 (2016) 210, https://doi.org/10.1016/j.jmmm.2016.06.018.

S. Rezaei and F. Ahmadian, First-principles study of halfmetallic properties in RbCaNZ (Z= O, S, and Se) quaternary Heusler compounds. J. Magn. Magn. Mater. 456 (2018) 78, https://doi.org/10.1016/j.jmmm.2018.02.006.

A. Taleb et al., Structural, magneto-electronic and thermophysical properties of the new d0 quaternary Heusler compounds KSrCZ (Z=P, As, Sb). Rev. Mex. Fis. 66 (2020) 265, https://doi.org/10.31349/RevMexFis.66.265.

S. Gheriballah et al., Investigating structure, magnetoelectronic, and thermoelectric properties of the new d0 quaternary Heusler compounds RbCaCZ (Z = P, As, Sb) from first principle calculations. Indian J. Pure Appl. Phys. 58 (2020) 818, https://nopr.niscair.res.in/handle/123456789/55599.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. B. 136 (1964) B864, https://doi.org/10.1103/PhysRev.136.B864.

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Technische Universitat, Wien, 2001.

J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

A. D. Becke, and E. R. A Johnson, simple effective potential for exchange. J. Chem.Phys. 124 (2006) 221101. https://doi.org/10.1063/1.2213970.

M. Jamal, S. Jalali Asadabadi, I. Ahmad, and H. A. Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95 (2014) 592, https://doi.org/10.1016/j.commatsci.2014.08.027.

G. K. H. Madsen and D. J. Singh, BoltzTra P. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175 (2006) 67, https://doi.org/10.1016/j.cpc.2006.03.007.

X. Dai et al., New quaternary half metallic material CoFeMnSi. J. Appl. Phys. 105 (2009) 07E901. https://doi.org/10.1063/1.3062812.

S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad, Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study . Appl. Phys. A 126 (2020) 190. https://doi.org/10.1007/s00339-020-3354-6.

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures. Proc Natl. Acad. Sci. U.S.A. 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244.

K. Kalaliz, A. Chahed, M.A Boukli, M.A. Khethir, A. Oughilas, and A. Saysede, First-principles study of electronic structures, thermodynamic, and thermoelectric properties of the new rattling Full Heusler compounds Ba2AgZ (Z= As, Sb, Bi).Rev. Mex. Fis. 67 (2021) 1-11. https://doi.org/10.31349/RevMexFis.67.060501.

Y. Li, J. Zhu, R. Paudel, J. Huang, and F. Zhou, Ab initio predictions of stability, half-metallicity and magnetism in Co2NbAl and Co2ZrAl full-Heusler alloys. Vacuum 192 (2021) 110418, https://doi.org/10.1016/j.vacuum.2021.110418.

D. M. Teter, Computational Alchemy: The Search for New Superhard Materials. MRS Bull. 23 (1998) 22, https://doi. org/10.1557/S0883769400031420.

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pur metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954) 823, https://doi.org/10.1080/14786440808520496.

J. A. Camargo-Martinez, and R. Baquero, Performance of the modified Becke-Johnson potential for semiconductors. Phys. Rev. B, 86 (2012) 195106, https://doi.org/10.1103/PhysRevB.86.195106.

Downloads

Published

2022-08-16

How to Cite

[1]
S. Gheriballah, A. Chahed, Y. Benazzouzi, and H. Rozale, “Structural, mechanical, electronic, and thermoelectric properties of new semiconducting d0 quaternary Heusler compounds CaKNaZ (Z =Si, Ge, Sn). A density functional theory study”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050501 1–, Aug. 2022.