A new computation method of minimum dwell time for the global asymptotic stability of switched linear differential systems

Authors

  • Ahmet Duman Necmettin Erbakan University

DOI:

https://doi.org/10.31349/RevMexFis.68.030702

Keywords:

Average dwell time, Global asymptotic stability, Restricted dwell time, Switched linear systems

Abstract

In this paper, switched linear systems are considered and dwell and average dwell time for their global asymptotic stability is examined. Dwell and average dwell time are determined based on the condition number for the global asymptotic stability of switched linear differential systems. Numerical examples which show the effect of the results obtained are given with the new dwell and average dwell times.

References

I. Canto´n, E. Campos-Canto´n, S. Gonzalez-Bautista, R. Balderas-Navarro, Experimental multi-scroll attractor driven by switched systems, Rev. Mex. Fis. 63 (2017) 117.

M. M. Elmetwally, N. D. Rao, Sensitivity Analysis in Power System Dynamic Stability Studies, IEEE Transactions on Power App. and Sys. PAS-91 (1972) 1692.

D. Liberzon, Switching in Systems and Control, (Springer Science & Business Media, New York, 2012).

S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, E. Bonabeau, G. Theraulaz, Self-Organization in Biological Systems (Princeton University Press, Princeton, NJ, 2003).

P. Holme, J. Saramäki, Temporal networks, Phys. Rep. 519 (2012) 97.

D. Needleman, Z. Dogic, Active matter at the interface between materials science and cell biology, Nat. Rev. Mater. 2 (2017) 17048.

O. Feinerman, I. Pinkoviezky, A. Gelblum, E. Fonio, N. S. Gov, The physics of cooperative transport in groups of ants, Nat. Phys. 14 (2018) 683.

P. S. Churchland, T. J. Sejnowski, The Computational Brain (MIT Press, Cambridge, MA, 2016).

C. K. Tse, M. Di Bernardo, Complex behavior in switching power converters, Proc. IEEE 90 (2002) 768.

M. J. O’Mahony, D. Simeonidou, D. K. Hunter, A. Tzanakaki, The application of optical packet switching in future communication networks, IEEE Commun. Mag. 39 (2001) 128.

S. Solmaz, R. Shorten, K. Wulff, F. O'Cairbre, A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control, Automatica 44 (2008) 2358.

A. Balluchi, M. D. Benedetto, C. Pinello, C. Rossi, A. Sangiovanni-Vincentelli, Cut-off in Engine Control: A Hybrid System Approach, in Proceedings of the 36th IEEE Conference on Decision and Control, (1997) 4720.

B. E. Bishop, M. W. Spong, Control of Redundant Manipulators Using Logic-Based Switching, in Proceedings of the 36th IEEE Conference on Decision and Control, (1998) 16.

W. Zhang, M. S. Branicky, S. M. Phillips, Stability of Networked Control Systems, IEEE Control Systems Magazine, 21 (1998) 84.

D. Z. Chen, Y. J. Guo, Advances on Switched Systems, Control Theory and Applications, 22 (2005) 954.

A. Kundu, D. Chatterjee, Stabilizing switching signals for switched systems, IEEE Transactions on Automatic Control 60 (2015) 882.

J. P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-time, in: Proc. of the 38th Conf. on Decision and Control, (1999) 2655.

Ö. Karabacak, Dwell time and average dwell time methods based on the cycle ratio of the switching graph, Systems Control Lett. 62 (2013) 1032.

S. Morse, Supervisory control of families of linear set-point conrollers-part 1:exact matching, IEEE Trans. Autom. Control, 41 (1996) 1413.

J. C. Geromel, P. Colaneri, Stability and stabilization of continuous-time switched linear systems, SIAM J. Control Optim. 45 (2006) 1915.

P. Colaneri, J.C. Geromel, A. Astolfi, Stabilization of continuous-time switched nonlinear systems, Systems Control Lett. 57 (2008) 95.

Ö. Karabacak, N.S. Şengör, A dwell time approach to the stability of switched linear systems based on the distance between eigenvector sets, Inter. J. Syst. Sci. 40 (2009) 845.

J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendom Press, Oxford, 1965).

G. H. Golub, C. F. V. Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 2013).

G. H. Golub, J. H. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Rev. 18 (1976), 578.

A. Ya. Bulgakov, An effectively calculable parameter for the stability quality of systems of linear differential equations with constant coefficients, Siberian Math. J. 21 (1980) 339.

A. Ya. Bulgakov, Matrix Computations with Guaranteed Accuracy in Stability Theory (Selçuk University The Research Center of Applied Mathematics, Konya, 1995).

S. K. Godunov, Ordinary Differential Equations with Constant Coefficients (Translations of Mathematical Monographs, American Mathematical Society, Providence, 1997)

H. Bulgak, Pseudoeigenvalues, spectral portrait of a matrix and their connections with different criteria of stability, in Error Control and Adaptivity in Scientific Computing, eds. H. Bulgak and C. Zenger, NATO Science Series, Series C: Mathematical and Physical Sciences, Vol. 536 (Kluwer Academic Publishers, Dordrecht, 1999), pp. 95–124.

A. Duman, K. Aydın, Sensitivity of Hurwitz stability of linear differential equation systems with constant coefficients, Int. J. Geom. Methods Mod. Phys. 14 (2017) 1750084.

J. P. Padrón, J. P. P. Padrón, Trajectory tracking error using fractional order time-delay recurrent neural networks using Krasovskii–Lur’e functional for Chua’s circuit via inverse optimal control, Rev. Mex. Fis. 66 (2020) 98.

A. Dasdan, R.K. Gupta, Faster maximum and minimum mean cycle algorithms for system-performance analysis, IEEE T. Comput. Aid. D. 17 (1998) 889.

A. Dasdan, Experimental analysis of the fastest optimum cycle ratio and mean algorithms, ACM Trans. Des. Autom. Electron. Syst. 9 (2004) 385.

Downloads

Published

2022-05-01

How to Cite

[1]
A. Duman, “A new computation method of minimum dwell time for the global asymptotic stability of switched linear differential systems”, Rev. Mex. Fís., vol. 68, no. 3 May-Jun, pp. 030702 1–, May 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory