Beyond Bulk Gay-Berne fluids: An outlook on mesogenic mixtures with molecular dynamics simulations


  • Aurora D. Gonzalez-Martinez Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa
  • Edward J. Sambriski Department of Chemistry, Delaware Valley University
  • Jose Antonio Moreno-Razo Universidad Autónoma Metropolitana IztapalapaAvenida San Rafael Atlixco 186, Colonia Vicentina, 09340 Iztapalapa, CDMX



Liquid crystal, Molecular Dynamics, Maier-Saupe


In this review, we focus on heterogeneous, thermotropic liquid crystal (LC) mixtures our group has studied with molecular dynamics (MD) simulations. Systems considered include: (1) binary LC mixtures, (2) colloidal inclusions in a mesogenic solvent, and (3) confined mesogenic samples. An extension of the Gay-Berne model is provided to treat the mixtures investigated. Our findings are contextualized to calamitic and discotic LC systems. Structural properties of the mesogenic solvent are probed using the Maier-Saupe (nematic) order parameter. Representative snapshots from MD simulations are used to corroborate phase phenomenology. Topological defects are treated in the presence of colloidal inclusions and in confined samples. The effect of solvent flow on the behavior of topological defects is also assessed. These LC mixtures are of interest in the area of applied materials: aside from their rich mesophase behavior, these systems provide a promising platform for molecular self-assembly and organization.


Gennes, P. and Prost, J. The Physics of Liquid Crystals. (Oxford University Press, 1993)

Chaikin, P., Lubensky, T. and Witten, T. Principles of Condensed Matter Physics. (Cambridge University Press,1995)

Safran, S. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. (CRC Press,2018)

Likos, C. Effective interactions in soft condensed matter physics. Phys. Rep, 348, 267-439 (2001)

Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. and Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527-538 (2008)

Muševič, I. Nematic colloids, topology and photonics. Philos. Trans. Royal Soc. A. 371, 20120266 (2013)

Lavrentovich, O. Liquid crystals, photonic crystals, metamaterials, and transformation optics. Proc. Natl. Acad. Sci. USA. 108, 5143-5144 (2011)

Igor Muševič, Miha Škarabot, Uroš Tkalec, Miha Ravnik, and Slobodan Žumer. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 313, 954-958 (2006)

Alexander, G., Chen, B., Matsumoto, E. and Kamien, R. Colloquium: Disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys, 84, 497-514 (2012)

Čopar, S., Porenta, T., Jampani, V., Muševič, I. and Žumer, S. Stability and rewiring of nematic braids in chiral nematic colloids. Soft Matter. 8, 8595-8600 (2012)

Ravnik, M., Alexander, G., Yeomans, J. and Žumer, S. Three-dimensional colloidal crystals in liquid crystalline blue phases. Phys. Rev. Lett. 108, 5188-5192 (2011)

Nych, A et al. Assembly and control of 3D nematic dipolar colloidal crystals. Nat. Commun. 4, 1489 (2013)

Poulin, P., Cabuil, V. and Weitz, D. Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett. 79, 4862 (1997)

Gonzalez-Martínez, A., Chavez-Rojo, M., Sambriski, E. and Moreno-Razo, J. Defect-mediated colloidal interactions in a nematic-phase discotic solvent. RSC Adv, 9, 33413-33427 (2019)

Martínez, A., Hermosillo, L., Tasinkevych, M. and Smalyukh, I. Linked topological colloids in a nematic host. Proc. Natl. Acad. Sci. USA. 112, 4546-4551 (2015)

Wang, X., Miller, D., De Pablo, J. and Abbott, N. Reversible Switching of Liquid Crystalline Order Permits Synthesis of Homogeneous Populations of Dipolar Patchy Microparticles. Adv. Funct. Mater, 24, 6219-6226 (2014)

Cavallaro Jr. et al., Ring around the colloid. Soft Matter. 9, 9099-9102 (2013)

Liu, Q., Senyuk, B., Tasinkevych, M. and Smalyukh, I. Nematic liquid crystal boojums with handles on colloidal handlebodies. Proc. Natl. Acad. Sci. USA. 110, 9231-9236 (2013)

S. Čopar and U. Tkalec and I. Muševič and S. Žumer. Knot theory realizations in nematic colloids. Proc. Natl. Acad. Sci. USA. 112, 1675-1680 (2015)

Senyuk, B., et al. Topological colloids. Nature. 493 pp. 200-205 (2013)

Araki, T. and Tanaka, H. Colloidal Aggregation in a Nematic Liquid Crystal: Topological Arrest of Particles by a SingleStroke Disclination Line. Phys. Rev. Lett, 97, 127801 (2006)

Ravnik, M. et al. Entangled nematic colloidal dimers and wires. Phys. Rev. Lett, 99 pp. 247801 (2007)

Jampani, V. et al. Colloidal entanglement in highly twisted chiral nematic colloids: Twisted loops, Hopf links, and trefoil knots. Phys. Rev. E. 84, 031703 (2011)

Hashemi, S. and Ravnik, M. Nematic colloidal knots in topological environments. Soft Matter. 14 pp. 4935-4945 (2018)

Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. and Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science. 333 pp. 62-65 (2011)

Lubensky, T., Pettey, D., Currier, N. and Stark, H. Topological defects and interactions in nematic emulsions. Phys. Rev. E. 57, 610-625 (1998)

Loudet, J., Barois, P. and Poulin, P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature. 407 pp. 611-613 (2000)

Wang, X., Miller, D., Bukusoglu, E., De Pablo, J. and Abbott, N. Topological defects in liquid crystals as templates for molecular self-assembly. Nat. Mater, 15 pp. 106-112 (2016)

Smalyukh, I., Lavrentovich, O., Kuzmin, A., Kachynski, A. and Prasad, P. Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. Phys. Rev. Lett, 95 pp. 157801-157804 (2005)

Gharbi, M., Nobili, M. and Blanc, C. Use of topological defects as templates to direct assembly of colloidal particles at nematic interfaces. J. Colloid Interface Sci, 417 pp. 250-255 (2014)

Pandey, M., et al. Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring. Phys. Rev. E. 89, 060502 (2014)

Kim, J., Yoneya, M. and Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature. 420, 159-162 (2002)

Sluckin, T., Dunmur, D. and Stegemeyer, H. Crystals that Flow. (Taylor, 2004)

Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci, 51, 627-659 (1949)

Oster, G. Two-phase formation in solutions of tobacco mosaic virus and the problem of long-range forces. J. Gen. Physiol, 33, 445-473 (1950)

Stephen, M. and Straley, J. Physics of liquid crystals. Rev. Mod. Phys, 46, 617 (1974)

Khoo, I. Liquid Crystals. (John Wiley,2007)

Sergeyev, S., Pisula, W. and Geerts, Y. Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev, 36, 1902-1929 (2007)

Jákli, A., Lavrentovich, O. and Selinger, J. Physics of liquid crystals of bent-shaped molecules. Rev. Mod. Phys, 90, 045004 (2018)

Huggins, M. Thermodynamic properties of solutions of longchain compounds. Ann. N. Y. Acad. Sci, 43, 1-32 (1942)

Miguel, E., Rull, L., Chalam, M. and Gubbins, K. Liquidvapour coexistence of the Gay-Berne fluid by Gibbs-ensemble simulation. Mol. Phys, 71, 1223-1231 (1990)

Miguel, E., Rull, L., Chalam, M., Gubbins, K. and Swol, F. Location of the isotropic-nematic transition in the Gay-Berne model. Mol. Phys, 72, 593-605 (1991)

Bates, M. and Luckhurst, G. Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay-Berne mesogen. J. Chem. Phys, 110, 7087-7108 (1999)

Adams, D., Luckhurst, G. and Phippen, R. Computer simulation studies of anisotropic systems: XVII. The Gay-Berne model nematogen. Mol. Phys, 61, 1575-1580 (1987)

Luckhurst, G. and Simmonds, P. Computer simulation studies of anisotropic systems: XXI. Parametrization of the Gay-Berne potential for model mesogens. Mol. Phys, 80, 233-252 (1993)

Berardi, R., Emerson, A., Luckhurst, G. and Whatling, S. Computer simulation studies of anisotropic systems: XXIII. The Gay-Berne discogen. Mol. Phys, 82, 113-124 (1994)

Miguel, E., Rio, E., Brown, J. and Allen, M. Effect of the attractive interactions on the phase behavior of the Gay-Berne liquid crystal model. J. Chem. Phys, 105, 4234-4249 (1996)

Hashim, R., Luckhurst, G. and Romano, S. Computersimulation studies of anisotropic systems. Part XXIV. Constantpressure investigations of the smectic B phase of the Gay-Berne mesogen. J. Chem. Soc. Faraday Trans, 91, 2141-2148 (1995)

Miguel, E. and Vega, C. The global phase diagram of the GayBerne model. J. Chem. Phys, 117, 6313-6322 (2002)

Velasco, E., Somoza, A. and Mederos, L. Liquid-crystal phase diagram of the Gay-Berne fluid by perturbation theory. J. Chem. Phys, 102, 8107-8113 (1995)

Velasco, E. and Mederos, L. A theory for the liquid-crystalline phase behavior of the Gay-Berne model. J. Chem. Phys, 109, 2361-2370 (1998)

Gay, J. and Berne, B. Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys, 74, 3316-3319 (1981)

Bates, M. and Luckhurst, G. Determination of the Maier-Saupe strength parameter from dielectric relaxation experiments: a molecular dynamics simulation study. Mol. Phys, 99, 1365- 1371 (2001)

Bates, M. and Luckhurst, G. X-ray scattering patterns of model liquid crystals from computer simulation: Calculation and analysis. J. Chem. Phys, 118, 6605-6614 (2003)

Brown, J., Allen, M., Rıo, E. and Miguel, E. Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys. Rev. E. 57, 6685 (1998)

Allen, M., Brown, J. and Warren, M. Computer simulation of liquid crystals. J. Phys. Condens. Matter. 8, 9433 (1996)

Bates, M. and Luckhurst, G. Studies of translational diffusion in the smectic A phase of a Gay-Berne mesogen using molecular dynamics computer simulation. J. Chem. Phys, 120, 394-403 (2004)

Cleaver, D., Care, C., Allen, M. and Neal, M. Extension and generalization of the Gay-Berne potential. Phys. Rev. E. 54, 559 (1996)

Ema, K., Nounesis, G., Garland, C. and Shashidhar, R. Calorimetric study of smectic polymorphism in octyloxyphenylnitrobenzoyloxy benzoate+ decyloxyphenyl-nitrobenzoyloxy benzoate mixtures. Phys. Rev. A. 39, 2599 (1989)

Raja, V., Shashidhar, R., Ratna, B., Heppke, G. and Bahr, C. New alternative for the smectic-A1-reentrant nematic-smecticAd bicritical point. Phys. Rev. A. 37, 303 (1988)

Bemrose, R., Care, C., Cleaver, D. and Neal, M. A molecular dynamics study of a bi-disperse liquid crystal mixture using a generalized Gay-Berne potential. Mol. Phys, 90, 625-636 (1997)

Bemrose, R., Care, C., Cleaver, D. and Neal, M. Computer Simulation of Bi-Disperse Liquid Crystals: The Effect of Concentration on Phase Behaviour and Structural Properties. Mol. Cryst. Liq. Cryst. 299, 27-32 (1997)

Moreno-Razo, J., et al. Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter. 7, 6828-6835 (2011)

E. Cañeda-Guzmán, J. A. Moreno-Razo, E. Díaz-Herrera, and E. J. Sambriski. Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal. Mol. Phys, 112, 1149-1159 (2014)

A. Calderón-Alcaraz, et. al. Bidimensional Gay-Berne Calamitic Fluid: Structure and Phase Behavior in Bulk and Strongly Confined Systems. Front. Phys, 8 pp. 668 (2021)

Moreno-Razo, J., Sambriski, E., Abbott, N., Hernández-Ortiz, J. and Pablo, J. Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature. 485, 86-89 (2012)

Moreno-Razo, J., Díıaz-Herrera, E. and Klapp, S. Fractionation in Gay-Berne liquid crystal mixtures. Phys. Rev. E Stat. Nonlin. Soft Matter Phys, 76, 041703 (2007)

Collings, P. Liquid Crystals: Nature’s Delicate Phase of Matter. (Princeton University Press,2002)

Stark, H. Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep, 351, 387-474 (2001)

Terentjev, E. Topological Aspects of Liquid Crystalline Colloids-Equilibria and Dynamics. Modern Aspects Of Colloidal Dispersions. pp. 257-267 (1998)

Poulin, P. and Weitz, D. Inverted and multiple nematic emulsions. Phys. Rev. E. 57, 626-637 (1998,1)

Cladis, P. and Kleman, M. Non-singular disclinations of strength S = +1 in nematics. J. Phys. France. 33, 591-598 (1972)

Krishnamurthy, K., Rao, D., Kanakala, M., Yelamaggad, C. and Kleman, M. Topological defects due to twist-bend nematic drops mimicking colloidal particles in a nematic medium. Soft Matter. 16, 7479-7491 (2020)

Noël, C., Bossis, G., Chaze, A., Giulieri, F. and Lacis, S. Measurement of Elastic Forces between Iron Colloidal Particles in a Nematic Liquid Crystal. Phys. Rev. Lett, 96, 217801 (2006)

Zhang, Y., et. al. A flexible optically re-writable color liquid crystal display. Appl. Phys. Lett, 112, 131902 (2018)

Smalyukh, I. Liquid crystal colloids. Annu. Rev. Condens. Matter Phys, 9 pp. 207-226 (2018)

Yang, D., Huang, X. and Zhu, Y. Bistable cholesteric reflective displays: materials and drive schemes. Annu. Rev. Mater. Sci, 27, 117-146 (1997)

Pires, D., Fleury, J. and Galerne, Y. Colloid particles in the interaction field of a disclination line in a nematic phase. Phys. Rev. Lett, 98, 247801 (2007)

Škarabot, M., ˇ et. al. Hierarchical self-assembly of nematic colloidal superstructures. Phys. Rev. E. 77, 061706 (2008)

Igor Muševič and Miha Škarabot. Self-assembly of nematic colloids. Soft Matter. 4, 195-199 (2008)

Ravnik, M. and Žumer, S. Nematic colloids entangled by topological defects. Soft Matter. 5, 269-274 (2009)

Vilfan, M., et. al. Confinement Effect on Interparticle Potential in Nematic Colloids. Phys. Rev. Lett, 101, 237801 (2008)

Loudet, J., et. al. Colloidal structures from bulk demixing in liquid crystals. Langmuir. 20, 11336-11347 (2004)

Gettelfinger, B., et al. Flow induced deformation of defects around nanoparticles and nanodroplets suspended in liquid crystals. Soft Matter. 6, 896-901 (2010)

Guzmán, O., Abbott, N. and Pablo, J. Quenched disorder in a liquid-crystal biosensor: Adsorbed nanoparticles at confining walls. J. Chem. Phys, 122, 184711 (2005)

Antypov, D. and Cleaver, D. The role of attractive interactions in rod-sphere mixtures. J. Chem. Phys, 120, 10307-10316 (2004)

Antypov, D. and Cleaver, D. The effect of spherical additives on a liquid crystal colloid. J. Phys.: Condens. Matter. 16, S1887- S1900 (2004)

Škarabot, M., et. al. Interactions of quadrupolar nematic colloids. Phys. Rev. E. 77, 031705 (2008)

Mozaffari, M., Babadi, M., Fukuda, J. and Ejtehadi, M. Interaction of spherical colloidal particles in nematic media with degenerate planar anchoring. Soft Matter. 7, 1107-1113 (2011)

Kotar, J., et. al. Interparticle Potential and Drag Coefficient in Nematic Colloids. Phys. Rev. Lett, 96, 207801 (2006)

Ravnik, M. and Žumer, S. Landau-de Gennes modelling of nematic liquid crystal colloids. Liq. Cryst, 36 pp. 1201-1214 (2009)

M. Škarabot and I. Muševič. Direct observation of interaction of nanoparticles in a nematic liquid crystal. Soft Matter. 6 pp. 5476-5481 (2010)

M. Škarabot, A. V. Ryzhkova and I. Muševič. Interactions of single nanoparticles in nematic liquid crystal. J. Mol. Liq, 267 pp. 384-389 (2018)

Guzmán, O., Kim, E., Grollau, S., Abbott, N. and Pablo, J. Defect structure around two colloids in a liquid crystal. Phys. Rev. Lett, 91, 235507 (2003)

Čopar, S. Topology and geometry of nematic braids. Phys. Rep, 538, 1-37 (2014)

Lin, K., Crocker, J., Zeri, A. and Yodh, A. Colloidal interactions in suspensions of rods. Phys. Rev. Lett, 87, 088301 (2001)

Galatola, P. and Fournier, J. Nematic-wetted colloids in the isotropic phase: Pairwise interaction, biaxiality, and defects. Phys. Rev. Lett, 86, 3915 (2001)

Terentjev, E. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys. Rev. E. 51, 1330 (1995)

Lev, B., Chernyshuk, S., Tomchuk, P. and Yokoyama, H. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Phys. Rev. E. 65, 021709 (2002)

Dierking, I. Polarizing Microscopy. Textures Of Liquid Crystals. pp. 33-42 (2003)

Wu, S., Efron, U. and Hess, L. Birefringence measurements of liquid crystals. Appl. Opt, 23, 3911-3915 (1984)

Wunderlich, B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta. 340-341 pp. 37-52 (1999)

Nesrullajev, A. Texture transformations and thermo-optical properties of nematic mesogen at nematic-isotropic liquid phase transition. J. Mol. Liq, 196 pp. 217-222 (2014)

D. R., Kula, P. and Herman, J. High Birefringence Liquid Crystals. Crystals. 3, 443-482 (2013)

Sastry, S., Kumar, et al. Liquid crystal parameters through image analysis. Liq. Cryst, 39, 1527-1537 (2012)

Strauss, J., Hoischen, A. and Kitzerow, H. An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals. Mol. Cryst. Liq. Cryst, 439, 281/[2147]-291/[2157] (2005)

Exner, G., Pérez, E. and Krasteva, M. Structure and Phase Transitions of Polymer Liquid Crystals, Revealed by Means of Differential Scanning Calorimetry, Real-Time Synchrotron WAXD, MAXS and SAXS and Microscopy. Liquid Crystalline Polymers: Volume 1-Structure And Chemistry. pp. 19-52 (2016)

Wang, X. and Zhou, Q. Liquid Crystalline Polymers. (World Scientific,2004)

DiLisi, G. Phases of liquid crystals. An Introduction To Liquid Crystals. pp. 4-1 to 4-20 (2019)

Collings, P. and Hird, M. Introduction to Liquid Crystals Chemistry and Physics. (CRC Press,1997)

Stark, H. and Ventzki, D. Non-linear Stokes drag of spherical particles in a nematic solvent. EPL. 57, 60-66 (2002)

Leslie, F. Theory of Flow Phenomena in Liquid Crystals. (Elsevier,1979)

Rey, A. and Tsuji, T. Recent advances in theoretical liquid crystal rheology. Macromol. Theory Simul, 7, 623-639 (1998)

Araki, T., Serra, F. and Tanaka, H. Defect science and engineering of liquid crystals under geometrical frustration. Soft Matter. 9, 8107-8120 (2013)

Stieger, T., Püschel-Schlotthauer, S., Schoen, M. and Mazza, M. Flow-induced deformation of closed disclination lines near a spherical colloid immersed in a nematic host phase. Mol. Phys, 114, 259-275 (2016)

Stieger, T., Schoen, M. and Mazza, M. Effects of flow on topological defects in a nematic liquid crystal near a colloid. J. Chem. Phys, 140, 054905 (2014)

Sengupta, A., Herminghaus, S. and Bahr, C. Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liq. Cryst. Rev, 2, 73-110 (2014)

Híjar, H. Dynamics of defects around anisotropic particles in nematic liquid crystals under shear. Phys. Rev. E. 102, 062705 (2020)

Ilnytskyi, J., Trokhymchuk, A. and Schoen, M. Topological defects around a spherical nanoparticle in nematic liquid crystal: Coarse-grained molecular dynamics simulations. J. Chem. Phys, 141, 114903 (2014)

Reyes-Arango, D., Quintana-H., J., Armas-Pérez, J. and Híjar, H. Defects around nanocolloids in nematic solvents simulated by Multi-particle Collision Dynamics. Phys. A: Stat. Mech. Appl, 547 pp. 123862 (2020)

Foffano, G., Lintuvuori, J., Tiribocchi, A. and Marenduzzo, D. The dynamics of colloidal intrusions in liquid crystals: a simulation perspective. Liq. Cryst. Rev, 2, 1-27 (2014)

Khullar, S., Zhou, C. and Feng, J. Dynamic Evolution of Topological Defects around Drops and Bubbles Rising in a Nematic Liquid Crystal. Phys. Rev. Lett, 99, 237802 (2007)

Yoneya, M., Fukuda, J., Yokoyama, H. and Stark, H. Effect of a Hydrodynamic Flow on the Orientation Profiles of a Nematic Liquid Crystal Around a Spherical Particle. Mol. Cryst. Liq. Cryst, 435, 75/[735]-85/[745] (2005)

Zhou, C., Yue, P. and Feng, J. The rise of Newtonian drops in a nematic liquid crystal. J. Fluid Mech, 593 pp. 385-404 (2007)

Fukuda, J., Stark, H., Yoneya, M. and Yokoyama, H. Interaction between two spherical particles in a nematic liquid crystal. Phys. Rev. E. 69, 041706 (2004)

Sivakumar, S., Wark, K., Gupta, J., Abbott, N. and Caruso, F. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater, 19, 2260-2265 (2009)

Kreibig, U. and Wetter, C. Light diffraction of in vitro crystals of six tobacco mosaic viruses. Z. Naturforsch. C. 35, 750-762 (1980)

Woltman, S., Jay, G. and Crawford, G. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater, 6, 929-938 (2007)

Teixeira, P. and Sluckin, T. Microscopic theory of anchoring transitions at the surfaces of pure liquid crystals and their mixtures. II. The effect of surface adsorption. J. Chem. Phys, 97, 1510-1519 (1992)

Heras, D., Mederos, L. and Velasco, E. Wetting properties of a hard-spherocylinder fluid on a substrate. Phys. Rev. E. 68, 031709 (2003)

Rodríguez-Ponce, I., Romero-Enrique, J. and Rull, L. Orientational transitions in a nematic liquid crystal confined by competing surfaces. Phys. Rev. E. 64, 051704 (2001)

Chakrabarti J., M. Anchoring Transitions of Nematic Liquid Crystals Induced by Solid Substrate. Frontiers In Materials Modelling And Design. pp. 334-338 (1998)

Wall, G. and Cleaver, D. Computer simulation studies of confined liquid-crystal films. Phys. Rev. E. 56, 4306-4316 (1997)

Zhang, Z., Chakrabarti, A., Mouritsen, O. and Zuckermann, M. Substrate-induced bulk alignment of liquid crystals. Phys. Rev. E. 53, 2461-2465 (1996)

Drzaic, P. Liquid Crystal Dispersions. (World Scientific,1995)

Watson, S., et al. Influence of electric fields on the smectic layer structure of ferroelectric and antiferroelectric liquid crystal devices. Phys. Rev. E. 65, 031705 (2002)

Hernández, S., et al. Liquid crystal nanodroplets, and the balance between bulk and interfacial interactions. Soft Matter. 8, 1443-1450 (2012)

Koenig Jr, G., et al. Single nanoparticle tracking reveals influence of chemical functionality of nanoparticles on local ordering of liquid crystals and nanoparticle diffusion coefficients. Nano Lett, 9, 2794-2801 (2009)

Bao, P., et al. Textures of Nematic Liquid Crystal CylindricSection Droplets Confined by Chemically Patterned Surfaces. Crystals. 11, 65 (2021)

Goodby, J., et al. Handbook of Liquid Crystals. (John Wiley,2014)

Carlton, R., et al. Chemical and biological sensing using liquid crystals. Liq. Cryst. Rev, 1, 29-51 (2013)

Cohen, G. and Hornreich, R. Ripple instability threshold in twisted cholesteric films: Multicritical boundaries and the effect of pretilt angles. Phys. Rev. A. 41, 4402-4412 (1990,4)

Fuh, A., Lin, C. and Huang, C. Dynamic pattern formation and beam-steering characteristics of cholesteric gratings. Jpn. J. Appl. Phys, 41, 211-218 (2002)

Berardi, R., Kuball, H., Memmer, R. and Zannoni, C. Chiral induction in nematics a computer simulation study. J. Chem. Soc. Faraday Trans, 94, 1229-1234 (1998)

Fukuda, J. and Žumer, S. Structural forces in liquid crystalline ˇ blue phases. Phys. Rev. E. 84, 040701 (2011)

Žumer, S. and Fukuda, J. Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun, 246, 2041-1723 (2011)

Langer, S. and Sethna, J. Textures in a chiral smectic liquidcrystal film. Phys. Rev. A. 34, 5035-5046 (1986)

Bezic, J. and Žumer, S. Chiral nematic liquid crystals in cylindrical cavities. A classification of planar structures and models of non-singular disclination lines. Liq. Cryst, 14, 1695-1713 (1993)

Ondris-Crawford, R., Ambrožič, M., Doane, J. and ˇ Žumer, S. Pitch-induced transition of chiral nematic liquid crystals in submicrometer cylindrical cavities. Phys. Rev. E. 50, 4773-4779 (1994)

Williams, R. Two transitions in tangentially anchored nematic droplets. J. Phys. A: Math. Gen, 19, 3211 (1986)

Lopez-Leon, T. and Fernandez-Nieves, A. Drops and shells of liquid crystal. Colloid Polym. Sci, 289, 345-359 (2011)

Xu, F. and Crooker, P. Chiral nematic droplets with parallel surface anchoring. Phys. Rev. E. 56, 6853-6860 (1997)

Vanzo, D., Ricci, M., Berardi, R. and Zannoni, C. Shape, chirality and internal order of freely suspended nematic nanodroplets. Soft Matter. pp. 11790-11800 (2012)

Juffer, A. and Berendsen, H. Dynamical surface boundary conditions: a simple boundary model for molecular dynamics simulations. Mol. Phys, 79, 623-644 (1993)

Khordad, R., Mohebbi, M., Keshavarzi, A., Poostforush, A. and Ghajari Haghighi, F. The Study of Gay-Berne Fluid: Integral Equations Method. Int. J. Mod. Phys. B. 23, 753-769 (2009)

Moradi, R. A Two-Component Fluid Mixture of the Hard Spherocylinders. Int. J. Mod. Phys. B. 25, 301-317 (2011)

Kotov, N. and Stellacci, F. Frontiers in Nanoparticle Research: Toward Greater Complexity of Structure and Function of Nanomaterials. Adv. Mater, 20 pp. 4221-4222 (2008)

Jin, W., et al. Confinement-induced columnar crystals of ellipses. Phys. Rev. Res, 3, 013053 (2021)

Zhang, R. and Wen, X. Structures and phase transition of liquid crystals in a dynamic slit confinement. AIP Adv, 10, 065307 (2020)

Quan, Z. and Fang, J. Superlattices with non-spherical building blocks. Nano Today. 5, 390-411 (2010)

Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 277, 1232-1237 (1997)

Decher, G. Layered Nanoarchitectures via Directed Assembly of Anionic and Cationic Molecules. Templating, Self-Assembly And Self-Organization. 9 pp. 507-528 (1996)

Qi, W., Graaf, J., Qiao, F., Marras, S., Manna, L. and Dijkstra, M. Enhanced photo-induced charge transfer properties of vertically aligned nanorods arrays fabricated by thermal annealing approach. Nano Letters. 12, 5299-5303 (2012)

Qiao, F. and Sang, Y. Enhanced photo-induced charge transfer properties of vertically aligned nanorods arrays fabricated by thermal annealing approach. J. Mater. Sci.: Mater. Electron, 25, 2339-2343 (2014)

Frenkel, D. and Eppenga, R. Evidence for algebraic orientational order in a two-dimensional hard-core nematic. Phys. Rev. A. 31, 1776 (1985)

Damasceno, P., Engel, M. and Glotzer, S. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano. 6, 609- 614 (2012)

Heras, D., Velasco, E. and Mederos, L. Topological defects in a two-dimensional liquid crystal confined in a circular nanocavity. Phys. Rev. E. 79, 061703 (2009)

Heras, D. and Velasco, E. Domain walls in two-dimensional nematics confined in a small circular cavity. Soft Matter. 10, 1758-1766 (2014)

Xu, Y., Wang, P. and MacLachlan, M. Self-Assembly of TwoDimensional Colloids in Spherical Space. J. Phys. Chem. C. 123, 17049-17055 (2019)

Lee, J., Oh, M. and Yoo, P. Concentric/bipolar ordering of liquid crystalline graphene oxide nanosheets confined in microfluidically synthesized spherical droplets. J. Mater. Chem. C. 9, 8947-8954 (2021)

Do, S., et al. From Chains to Monolayers: Nanoparticle Assembly Driven by Smectic Topological Defects. Nano Lett, 20, 1598-1606 (2020)

Gharbi, I., et al, Liquid Crystal Films as Active Substrates for Nanoparticle Control. ACS Appl. Nano Mater, 4, 6700-6708 (2021)

Pearce, D. and Kruse, K. Properties of twisted topological defects in 2D nematic liquid crystals. Soft Matter. 17, 7408-7417 (2021)

Yao, X., Zhang, L. and Chen, J. Defect patterns of twodimensional nematic liquid crystals in confinement. Phys. Rev. E. 105, 044704 (2022)

Bisht, K., Wang, Y., Banerjee, V. and Majumdar, A. Tailored morphologies in two-dimensional ferronematic wells. Phys. Rev. E. 101, 022706 (2020)

Wang, Y., Zhang, P. and Chen, J. Formation of threedimensional colloidal crystals in a nematic liquid crystal. Soft Matter. 14, 6756-6766 (2018)

Wagberg, L. and Erlandsson, J. The Use of Layer-by-Layer Self-Assembly and Nanocellulose to Prepare Advanced Functional Materials. Adv. Mater, pp. 2001474 (2020)

Konopelnyk, O., Aksimentyeva, O., Horbenko, Y., Poliovyi, D. and Opaynych, I. Layer-by-layer assembly and thermal sensitivity of poly(3,4-ethylenedioxythiophene) nanofilms. Mol. Cryst. Liq. Cryst, 640, 158-164 (2016)

Amabilino, D. Supramolecular Chemistry at Surfaces. (The Royal Society of Chemistry,2016)

Lee, T., et al. Layer-by-Layer Assembly for GrapheneBased Multilayer Nanocomposites: Synthesis and Applications. Chem. Mater, 27, 3785-3796 (2015)

Borges, J. and Mano, J. Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chem. Rev, 114, 8883-8942 (2014)

Tjipto, E., et al. Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly. Nano Lett, 6, 2243-2248 (2006)

Richardson, J., Björnmalm, M. and Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science. 348, aaa2491 (2015)

Zhang, X., Chen, H. and Zhang, H. Layer-by-layer assembly: from conventional to unconventional methods. Chem. Commun,, 1395-1405 (2007)

Jalili, R., et al. Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route toward the Next Generation of Self-Assembled Layer-by-Layer Multifunctional 3D Architectures. ACS Nano. 7, 3981-3990 (2013)

Batys, P., Nosek, M. and Weronski, P. Structure analysis of layer-by-layer multilayer films of colloidal particles. Appl. Surf. Sci, 332 pp. 318-327 (1999)

Ariga, K., Hill, J. and Ji, Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys, 9, 2319-2340 (2007)

Tian, W., VahidMohammadi, A. and And, Z. Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun, 10 pp. 2558 (2019)

Santos, A., Pereira, I., Ferreira, C., Veiga, F. and Fakhrullin, R. Chapter 1.4 - Layer-by-Layer Assembly for Nanoarchitectonics. Advanced Supramolecular Nanoarchitectonics. pp. 89- 121 (2019)

Zhao, S., et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth M hwald. ACS Nano. 13, 6151-6169 (2019)

Oliveira, D., Gasparotto, L. and Siqueira, Jr., J. Processing of nanomaterials in Layer-by-Layer films: Potential applications in (bio)sensing and energy storage. An. Acad. Bras. Cienc. 91 pp. e20181343 (2019)

Moon, G., et al. Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process. Processes. 6, 108 (2018)

Bielejewska, N. and Hertmanowski, R. Functionalization of LC molecular films with nanocrystalline cellulose: A study of the self-assembly processes and molecular stability. Colloids And Surfaces B: Biointerfaces. 187 pp. 110634 (2020)

Bielejewska, N. and Hertmanowski, R. Surface characterization of nanocomposite Langmuir films based on liquid crystals and cellulose nanocrystals. Journal Of Molecular Liquids. 323 pp. 115065 (2021)

Xu, Z. and Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun, 2, 571 (2011)

Pan, L., Liu, Y., Zhong, M. and Xie, X. Coordination-Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. Small. 16, 1902779 (2020)

Zheng, Z., Li, Y., Bisoyi, H., Wang, L., Bunning, T. and Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature. 531, 352-356 (2016)

Pal, K., Aljabali, A., Kralj, S., Thomas, S. and Gomes de Souza, F. Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations. Chemosphere. 263 pp. 128104 (2021)

Ku, K., et al. Environmentally Stable Chiral-Nematic LiquidCrystal Elastomers with Mechano-Optical Properties. Appl. Sci, 11, 5037 (2021)

Choudhary, A., et al. Alignment layer and helix controlled unconventional operational switching in ferroelectric liquid crystal. J. Phys. D: Appl. Phys, 54, 505301 (2021)

Pal, K., et al. Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Critical Reviews In Solid State And Materials Sciences. 46, 385-449 (2021)

M. Madhu Mohan, N. Pongali Sathya Prabu, and K. Pal, Phase-segregated hydrogen bonded thermotropic liquid crystal’s optical shuttering response and electro-optical sensor application. Materials Letters. 305 pp. 130821 (2021)

Chen, Y., et al. Light-driven bimorph soft actuators: design, fabrication, and properties. Mater. Horiz, 8, 728-757 (2021)

Fadda, F., Gonnella, G., Marenduzzo, D., Orlandini, E. and Tiribocchi, A. Switching dynamics in cholesteric liquid crystal emulsions. J. Chem. Phys, 147, 064903 (2017)

Yin, Y., Shiyanovskii, S. and Lavrentovich, O. Fast Switching of Nematic Liquid Crystals by an Electric Field: Effects of Dielectric Relaxation on the Director and Thermal Dynamics. Thermotropic Liquid Crystals: Recent Advances. pp. 277-295 (2007)

Oster, L., et al. Controlling Liquid Crystal Configuration and Phase Using Multiple Molecular Triggers. Molecules. 27, 878 (2022)

Clark, M. Liquid Crystal Devices. Encyclopedia Of Physical Science And Technology (Third Edition). pp. 701-715 (2003)

Zhai, F., et al. Graphene-based chiral liquid crystal materials for optical applications. J. Mater. Chem. C. 7, 2146-2171 (2019)

Ma, R., et al. Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Prog. Mater. Sci, 113 pp. 100665 (2020)

Hogan, B., Kovalska, E., Craciun, M. and Baldycheva, A. 2D material liquid crystals for optoelectronics and photonics. J. Mater. Chem. C. 5, 11185-11195 (2017)

Harth, K. and Stannarius, R. Topological Point Defects of Liquid Crystals in Quasi-Two-Dimensional Geometries. Front. Phys, 8 pp. 112 (2020)

Bagiński, M., Szmurło, A., Andruszkiewicz, A., Wójcik, M. and Lewandowski, W. Dynamic self-assembly of nanoparticles using thermotropic liquid crystals. Liq. Cryst, 43, 2391-2409 (2016)

Do, S., et al. Interactions Between Topological Defects and Nanoparticles. Front. Phys, 7 pp. 234 (2020)

Shen, Y. and Dierking, I. Perspectives in Liquid-CrystalAided Nanotechnology and Nanoscience. Appl. Sci, 9, 2512 (2019)

Melton, C., Riahinasab, S., Keshavarz, A., Stokes, B. and Hirst, L. Phase Transition-Driven Nanoparticle Assembly in Liquid Crystal Droplets. Nanomaterials. 8, 146 (2018)

Ong, L. and Yang, K. Surfactant-Driven Assembly of Poly(ethylenimine)-Coated Microparticles at the Liquid Crystal/Water Interface. J. Phys. Chem. B. 120, 825-833 (2016)

Lavrentovich, O. Active colloids in liquid crystals. Curr. Opin. Colloid Interface Sci, 21 pp. 97-109 (2016)

Machon, T. and Alexander, G. Knots and nonorientable surfaces in chiral nematics. Proc. Natl. Acad. Sci. USA. 110, 14174-14179 (2013)

Blanc, C., Coursault, D. and Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev, 1, 83-109 (2013)

Tkalec, U. and Muševič, I. Topology of nematic liquid crystal colloids confined to two dimensions. Soft Matter. 9, 8140-8150 (2013)

Jangizehi, A., Schmid, F., Besenius, P., Kremer, K. and Seiffert, S. Defects and defect engineering in Soft Matter. Soft Matter. 16, 10809-10859 (2020)

Luo, Y., Serra, F. and Stebe, K. Experimental realization of the “lock-and-key” mechanism in liquid crystals. Soft Matter. 12, 6027-6032 (2016)

Li, Y., Prince, E., Cho, S., Salari, A., Golestani, Y., Lavrentovich, O. and Kumacheva, E. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals. Proc. Natl. Acad. Sci. USA. 114, 2137-2142 (2017)

Kim, D., et al. Self-assembly and polymer-stabilization of lyotropic liquid crystals in aqueous and non-aqueous solutions. Liq. Cryst. Rev, 5, 34-52 (2017)

Kurioz, P., Kralj, M., Murray, B., Rosenblatt, C. and Kralj, S. Nematic topological defects positionally controlled by geometry and external fields. Beilstein J. Nanotechnol, 9 pp. 109-118 (2018)

Sudha, D., Ochoa, J. and Hirst, L. Colloidal aggregation in anisotropic liquid crystal solvent. Soft Matter. 17, 7532-7540 (2021)

Pishnyak, O., Shiyanovskii, S. and Lavrentovich, O. Aggregation of colloidal particles in a non-equilibrium backflow induced by electrically-driven reorientation of the nematic liquid crystal. J. Mol. Liq, 164, 132-142 (2011)

Dell’Isola, F., Steigmann, D. and Corte, A. Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response. Appl. Mech. Rev, 67 (2016)

Giomi, L., Kos, Z., Ravnik, M. and Sengupta, A. Cross-talk ˇ between topological defects in different fields revealed by nematic microfluidics. Proc. Natl. Acad. Sci. USA. 114, E5771- E5777 (2017)

Kim, M. and Serra, F. Tunable Dynamic Topological Defect Pattern Formation in Nematic Liquid Crystals. Adv. Opt. Mater, 8, 1900991 (2020)

Dolganov, P., Cluzeau, P. and Dolganov, V. Interaction and self-organization of inclusions in two-dimensional freestanding smectic films. Liq. Cryst. Rev, 7, 1-29 (2019)

Long, C., Tang, X., Selinger, R. and Selinger, J. Geometry and mechanics of disclination lines in 3D nematic liquid crystals. Soft Matter. 17, 2265-2278 (2021)




How to Cite

A. D. Gonzalez-Martinez, E. J. Sambriski, and J. A. Moreno-Razo, “Beyond Bulk Gay-Berne fluids: An outlook on mesogenic mixtures with molecular dynamics simulations”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050101 1–, Aug. 2022.