Detección y estudio de fotones producidos en Aluminio por incidencia de rayos cósmicos

Authors

  • Noemí Moreno Universidad de Guanajuato
  • Julián Félix Universidad de Guanajuato

DOI:

https://doi.org/10.31349/RevMexFis.69.020802

Keywords:

Aluminium; cosmic rays; elementary particles detection; interaction incident particle and matter; photon

Abstract

Understanding the interaction between particles and matter is important for the advancement of new detection and particles properties measurement techniques. The result of interaction processes between incident particle and detection material is the production of photons, ions or both. The photon production in metal plaques due to cosmic rays incidence has not been reported to date. We planned, designed, built, characterized and operated an experimental system based on 10 × 10 cm Aluminium plates of various thicknesses and the photodiode Hamamatsu S12572-100P with which we show evidences of photon production in Aluminium due to cosmic rays incidence. We detected signals between violet and infrared with a minimum of dark counts, with approximately the same intensity, the same proportion between the different colors, and we show that they have characteristics that we associate with photons: absorption, reflection, refraction, dispersion and polarization, then we concluded that the detected signals must be produced by photons. The photons are produced inside the material by the incidence of cosmic rays. We observed that the greater the thickness of Aluminium traversed the greater the number of photons produced, in concordance with the very well known result that the greater the thickness of Aluminium traversed by the particle the greater the deposited energy. Some applications of this phenomenon are elementary particles detection, identification of materials, study of cosmic rays, study of ionizing radiation, etc. We present technical details of the experimental system, the physical results obtained, and outline possible explanations of this phenomenon.

 

El entendimiento de la interacción entre partículas y la materia es importante para el avance de nuevas técnicas de detección y medición de propiedades de las partículas. El resultado de los procesos de interacción partícula incidente y material de detección es la producción de fotones, de iones, o de ambos. A la fecha no se ha reportado la producción de fotones en placas metálicas por incidencia de rayos cósmicos. Planeamos, diseñamos, construimos, caracterizamos y operamos un sistema experimental, basado en placas de Aluminio de 10cm x 10cm de varios espesores y el fotodiodo Hamamatsu S12572-100P, con el que mostramos evidencias de la producción de fotones en Aluminio por incidencia de rayos cósmicos. Detectamos señales entre el violeta e infrarrojo, con un mínimo de cuentas oscuras, con aproximadamente la misma intensidad, la misma proporción, entre los diferentes colores, y mostramos que tienen características que asociamos a los fotones: absorción, reflexión, refracción, dispersión, y polarización, por lo que concluimos que deben de ser fotones las señales detectadas. Los fotones se producen en el interior del material por incidencia de rayos cósmicos. Observamos que a mayor espesor de Aluminio atravesado mayor número de fotones producidos, en concordancia con el resultado conocido que a mayor espesor de aluminio atravesado por la partícula mayor energía depositada. Algunas aplicaciones de este fenómeno son detección de partículas elementales, identificación de materiales, estudio de rayos cósmicos, estudio de radiación ionizante, etc. Presentamos los detalles técnicos del sistema experimental, los resultados físicos obtenidos, y esbozamos posibles explicaciones de este fenómeno.

References

E. Floratos, Introduction to Particle Physics. Physics Dept University of Athens. CERN. November 2015. pp. 3-39. https://indico.cern.ch/event/447008/contributions/1953687/attachments/1184942/1717323/ParticlePhysicsFORTEACHERS.pdf

A. H. Rosenfeld, y G. A. Snow, 8h. Elementary Particles and Interactions. University of California, Berkeley. University of Maryland. https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section8h.pdf

CERN. Cosmic rays: particles from outer space. https://home.cern/science/physics/cosmic-rays-particles-outer-space

Particle Data Group. 30. Cosmic rays. Revised October 2019. https://pdg.lbl.gov/2020/reviews/rpp2020-rev-cosmic-rays.pdf

S. Koontz, Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety. Spring 2015. NASA Space Center, Houston, Texas. pp. 3-27. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150003480.pdf

W. F. Hanlon. Cosmic Ray Spectra of Various Experiments. The University of Utah. https://www.physics.utah.edu/whanlon/spectrum.html

N. Murphy, Cosmic Rays and Particle Acceleration. HarvardSmithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. April 14-16, 2014. pp. 3-27. URL: https://www.cfa.harvard.edu/namurphy/Lectures/Ay25308ParticleAccel.pdf

V. F. Hess, Unsolved Problems in Physics: Tasks for the Immediate Future in Cosmic Ray Studies. Nobel Lecture, December 12, 1936. https://www.nobelprize.org/prizes/physics/1936/hess/lecture/

Erika Garutti. The Physics of Particle Detectors. Lecture Notes. SS 2012. pp. 3- 40. URL: https://www.desy.de/garutti/LECTURES/ParticleDetectorSS12/L1IntroductionHEPdetectors.pdf

Boris Shwartz Claus Grupen. Particle Detectors. Second Edition. (Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology). URL: https://ajbell.web.cern.ch/documents/eBooks/ParticleDetectorsGrupen.pdf

Particle Data Group. 28. Particle Detectors. Revised 2006. https://pdg.lbl.gov/2006/reviews/pardetrpp.pdf

Particle Data Group. 27. Passage of particles through matter. Revised January 2012. URL: https://pdg.lbl.gov/2011/reviews/rpp2011-revpassage-particles-matter.pdf

R. A. Gutierrez Sanchez Diseño, construccion, caracterización y operacion de un detector de rayos cosmicos de 32 canales para la deteccion de partıculas con carga positiva. Universidad de Guanajuato. Division de Ciencias e Ingenierıas

Eljen Technology, FAST TIMING PLASTIC SCINTILLATOR EJ-232, EJ-232Q. Datasheet. https://eljentechnology.com/products/plastic-scintillators/ej-232-ej-232q

B. K. Precision DC Power Supply. XLN Series. Datasheet, Manual. URL: https://bkpmedia.s3.amazonaws.com/downloads/manuals/enus/XLNmanual.pdf

Tenma 72-8335A. Datasheet. https://www.farnell.com/datasheets/1813161.pdf

National Instruments. USER MANUAL AND SPECIFICATIONS NI cRIO-9025. https//www.ni.com/pdf/manuals/375490d.pdf

Tektronix, Digital Storage Oscilloscopes TDS2000C Series Datasheet, https://www.mouser.com/datasheet/2/403/TDS2000C-Digital-StorageOscilloscope-Datasheet-4-844791.pdf

Hamamatsu. MPPC (Multi-Pixel Photon Counter). S12572-010, -015C/P. Datasheet. URL: https://www.hamamatsu.com/resources/pdf/ssd/s12572-010etckapd1045e.pdf

Space Science Laboratory UC Berkeley. Rainbows of Light: The Visible Light Spectrum. Five Stars Pathway Afterschool Science Curriculum. MC 7450 Berkeley, CA 94706. pp. 5. https://multiverse.ssl.berkeley.edu/Portals/0/Documents/FiveStarsCurriculumDocs/FiveStarsLessonVisibleLightfinal.pdf

Downloads

Published

2023-03-01

How to Cite

[1]
N. Moreno and J. Félix, “Detección y estudio de fotones producidos en Aluminio por incidencia de rayos cósmicos”, Rev. Mex. Fís., vol. 69, no. 2 Mar-Apr, pp. 020802 1–, Mar. 2023.