Dosis equivalente ambiental H*(10) por neutrones producidos en un Varian Clinac 2300 mediante detectores tipo CR-39

Authors

  • Juan J Rodriguez B Innova Scientific SAC
  • Israel Barrutia

DOI:

https://doi.org/10.31349/RevMexFis.68.021101

Keywords:

ambient dose equivalent, CR-39, track density; neutron fluence

Abstract

Mediante detectores de trazas tipo CR-39 se determinó la dosis equivalente ambiental H*(10) por neutrones rápidos y térmicos en un acelerador Varian Clinac 2300 que opera en el rango de 6-18 MV. Mediciones preliminares fueron efectuadas ante una fuente moderada de neutrones 252Cf para obtener la respuesta del detector según el rango de energía. Se obtuvieron valores de tasa de densidad de trazas, flujo y dosis equivalente ambiental H*(10) por neutrones rápidos y térmicos en la mesa de tratamiento del recinto. Se determinó que la dosis equivalente ambiental H*(10) por unidad de dosis Gy en el isocentro (IC) es de 162 ± 11 μSv/Gy a una distancia de 13 cm del IC. Se presentan igualmente valores de flujo y tasa de densidad de trazas en el cabezal del acelerador.

References

L. Deng et al., Photoneutron radiation field of ducts in barrier of 15 MV medical electron accelerators, Radiat. Phys. Chem. 140 (2017) 340, https://doi.org/10.1016/j.radphyschem.2017.02.001

D. Al-Othmany, S. Abdul-Majid y M. Kadi, Fast Neutron Dose Mapping in a linac Radiotheray Facility, Tenth Radiation Physics & Protection Conference, 10 (2010) 123, https://www.researchgate.net/publication/258219414_Fast_Neutron_Dose_Mapping_in_a_linac_Radiotheray_Facility

L. Paredes et al., Fast neutron leakage in 18 MeV medical electron accelerator, Radiat. Meas. 31 (1999) 475, https://doi.org/10.1016/S1350-4487(99)00199-7

A. Karimi et al., Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy, Appl. Radiat. Isotopes. 145 (2019) 24, https://doi.org/10.1016/j.apradiso.2018.12.007

R. Nath et al., Neutrons from high-energy x-ray medical accelerators: An estimate of risk to the radiotherapy patient, Med. Phys. 11 (1984) 231, https://doi.org/10.1118/1.595497

G. Xu, B. Bednarz y H. Paganetti, A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction, Phys. Med. Biol. 53 (2008)193, http://dx.doi.org/10.1088/0031-9155/53/13/R01

T. Soto-Bernal et al., Neutron production during the interaction of monoenergetic electrons with a Tungsten foil in the radiotherapeutic energy range, Nucl. Instrum. Methods Phys. Res. A. 868 (2017) 27, http://dx.doi.org/10.1016/j.nima.2017.06.027

T. Soto-Bernal et al., Neutron production in the interaction of 12 and 18 MeV electrons with a scattering foil inside a simple LINAC head, Appl. Radiat. Isotopes. 139 (2018) 46, https://doi.org/10.1016/j.apradiso.2018.04.024

G. Tosi et al., Neutron measurements around medical electron accelerators by active and passive detection techniques, Med. Phys. 18 (1991) 54, https://doi.org/10.1118/1.596751

R. Nath et al., Neutron Measurements around High Energy X-Ray Radiotherapy Machines, AAPM Report 19. 1st ed. (AAPM, New York, 1986) pp. 7-12.

S. Dawn et al., Evaluation of in-field neutron production for medical LINACs with and without flattening filter for various beam parameters - Experiment and Monte Carlo simulation, Radiat. Meas. 118 (2018) 98, http://dx.doi.org/10.1016/j.radmeas.2018.04.005

R. Barquero et al., Thermoluminescence measurements of neutron dose around a medical linac, Radiat. Prot. Dosim. 101 (2002) 493, https://doi.org/10.1093/oxfordjournals.rpd.a006035

R. Barquero et al., Neutron spectra and dosimetric features around an 18 mv linac accelerator, Health Phys. 88 (2005) 48, https://doi.org/10.1097/01.hp.0000142500.32040.ac

N. Shagoli et al., Neutron dose evaluation of Elekta Linac at two energies (10 & 18 MV) by MCNP code and comparison with experimental measurements, J. Adv. Phys. 6 (2014) 1006, https://doi.org/10.24297/jap.v6i1.1820

E. Bezak, R. Takam y L. Marcu, Peripheral Photon and Neutron Doses from Prostate Cancer External Beam Irradiation, Radiat. Prot. Dosim. 167 (2015) 591, https://doi.org/10.1093/rpd/ncu362

T. Fujibuchi et al., Measurement of the secondary neutron dose distribution from the LET spectrum of recoils using the CR-39 plastic nuclear track detector in 10 MV X-ray medical radiation fields, Nucl. Instrum. Methods Phys. Res. B. 349 (2015) 239, http://dx.doi.org/10.1016/j.nimb.2015.03.006

E. Mohamedy et al., Assessment the Photo-neutron Contamination of IMRT and 3D-Conformal Techniques Using Thermoluminescent Dosimeter (TLD), J. Pharm. Res. Int. 25 (2018) 1, https://doi.org/10.9734/jpri/2018/v25i430107

B. Vukovic et al., A neutron track etch detector for electron linear accelerators in radiotherapy, Radiol. Oncol. 44 (2010) 62, https://doi.org/10.2478/v10019-010-0003-2

M. Poje et al., The Neutron Dose Equivalent Around High Energy Medical Electron Linear Accelerators, Nucl. Technol. Radiat. Prot. 29 (2014) 207, http://dx.doi.org/10.2298/NTRP1403207P

R. McCall, T. Jenkins y R. Shore, Transport of Accelerator Produced Neutrons in a Concrete Room, IEEE Trans. Nucl. Sci. 26 (1979) 1593, https://doi.org/10.1109/TNS.1979.4330446

D. Followil et al., Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators, J. Appl. Clin. Med. Phys. 4 (2003) 189, https://doi.org/10.1120/jacmp.v4i3.2514

D. Nikezic y K. Yu, Formation and growth of tracks in nuclear track materials, Mat. Sci. Eng. R. 46 (2004) 51, https://doi.org/10.1016/j.mser.2004.07.003

C. Yip et al., Chemical etching characteristics for cellulose nitrate, Mater. Chem. Phys. 95 (2006) 307, https://doi.org/10.1016/j.matchemphys.2005.06.024

M. Rana, CR-39 nuclear track detector: An experimental guide, Nucl. Instr. Meth. Phys. Res. A. 910 (2018) 121, https://doi.org/10.1016/j.nima.2018.08.077

L. Tommasino y G. Espinosa, Neutrons, radon, nanoparticles, and nanoholes: Everything comes to a full circle with track detectors, Radiat. Meas. 50 (2013) 22, https://doi.org/10.1016/j.radmeas.2012.08.011

F. d’Errico et al., Track size distributions in CR-39 neutron dosimeters treated with carbon dioxide, Radiat. Meas. 106 (2017) 607, https://doi.org/10.1016/j.radmeas.2017.05.005

S. Paul et al., Measurement of thick target neutron yield from the reaction (p+181Ta) with projectiles in the range of 6–20 MeV, Nucl. Instr. Meth. Phys. Res. A. 880 (2018) 75, https://doi.org/10.1016/j.nima.2017.10.046

D. Salim y S. Ebrahiem, Measurement of Radon concentration in College of Education, Ibn Al- Haitham buildings using Rad-7 and CR-39 detector, Energy Procedia. 157 (2019) 918, https://doi.org/10.1016/j.egypro.2018.11.258

M. Rana, Annealing of fission fragment tracks in CR-39 nuclear track detector - Phenomenological model, Nucl. Instr. Meth. Phys. Res. A. 940 (2019) 40, https://doi.org/10.1016/j.nima.2019.05.089

M. L’Annunziata, Handbook of Radioactivity Analysis, 2nd ed. (Elsevier, San Diego, 2003) pp. 198-199

L. Sajo-Bohus, E. Greaves y J. Pálfalvi, , Boron Studies in Interdisciplinary Fields Employing Nuclear

Track Detectors (NTDs), Radioisotopes – Applications in Bio-Medical Science, 1st Edition. (London, 2011) 2712, https://doi.org/10.5772/24555

International Commission Of Radiological Protection, Conversion Coefficients for use in Radiological Protection against External Radiation Publication 74, 1st ed. (Pergamon, New Jersey, 1993), pp. 349-350.

M. Barrera et al., Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field, AIP Conf. Proc. 1671 (2015) 030002, https://doi.org/10.1063/1.4927191

R. Alvarado et al., Neutron flux characterization using LR-115 NTD and binary glass metal as converter, Rev. Mex. Fís. S. 56 (1) (2010) 5, https://www.redalyc.org/articulo.oa?id=57030351002

E. Greaves et al., Cryolite‐Alumina Solutions Analysis by Neutron Activation, AIP Conf. Proc. 884 (2007) 482, https://doi.org/10.1063/1.2710636

Aea Technology, Technical records Cf-252 source, 1st ed. (Vienna, 2000), pp. 49-50.

L. Sajo-Bohus et al., Graphite moderated 252Cf source, Appl. Radiat. Isotopes. 100 (2015) 108, https://doi.org/10.1016/j.apradiso.2015.02.025

International Atomic Energy Agency, Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes. Supplement to Technical Reports Series No. 318, 1st ed (IAEA, Vienna, 2001), pp. 85-86

National Council On Radiation Protection And Measurements, Neutron Contamination from Medical Electron Accelerators Report 79, 1st ed. (NCRP, Maryland, 1984)

A. Szydlowski et al., Application of nuclear track detectors as sensors for photoneutrons generated by medical accelerators, Radiat. Meas. 50 (2013) 74, https://doi.org/10.1016/j.radmeas.2012.06.011

L. Sajo-Bohus, H. Vega-Carrillo y H. Virk, SSNTD Technique in Photo-Neutron Applications , Solid State Phenom. 239 (2015) 180, https://doi.org/10.4028/www.scientific.net/SSP.239.180

E. Vilela et al., Optimization of CR-39 for fast neutron dosimetry applications, Radiat. Meas. 31 (1999) 437, https://doi.org/10.1016/S1350-4487(99)00141-9

A. Mohammadi et al., New aspect determination of photoneutron contamination in 18 MV medical linear accelerator, Radiat. Meas. 95 (2016) 55, https://doi.org/10.1016/j.radmeas.2016.03.006

H. Vega-Carrillo et al., Neutron and photon spectra in LINACs, Appl. Radiat. Isotopes. 71 (2012) 75, https://doi.org/10.1016/j.apradiso.2012.03.034

S. Martínez-Ovalle et al., Neutron Dose Equivalent and Neutron Spectra in Tissue for Clinical Linacs Operating at 15, 18 and 20 MV, Radiat. Prot. Dosim. 147 (2011) 498, https://doi.org/10.1093/rpd/ncq501

A. Alem-Bezoubiri et al., Monte Carlo estimation of photoneutrons spectra and dose equivalent around an 18 MV medical linear accelerator, Radiat. Phys. Chem. 97 (2014) 381, https://doi.org/10.1016/j.radphyschem.2013.07.013

A. Facure et al., A study of neutron spectra from medical linear accelerators, Appl. Radiat. Isotopes. 62 (2005) 69, https://doi.org/10.1016/j.apradiso.2004.05.072

J. Liu et al., Calculation of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials. No. SLAC-PUB-7404. Stanford Linear Accelerator Center (SLAC), International Conference on Radiation Dosimetry and Safety. (2006) 7404, https://inspirehep.net/literature/731803

International Commission Of Radiological Protection, Data for Use in Protection against External Radiation, ICRP Publication 51, 1st ed. (ICRP, Oxford, 1987), pp. 241-242.

P. Fowler et al., Track Recording Properties of the Plastic CR-39 for Non-Relativistic Ions in the Charge Range 6≥Z≥29, Proceedings of the 10th International Conference. (1980) 239, https://doi.org/10.1016/B978-0-08-025029-8.50033-0

B. El-Badry et al., Neutron response study using poly allyl diglycol carbonate, Pramana – J. Phys. 69 (2007) 669, https://doi.org/10.1007/s12043-007-0165-7

A. Munter, NIST, Center for Neutron Research, Scattering Length Density Calculator; https://www.ncnr.nist.gov/resources/sldcalc.html

C. Domingo et al., Measurements in quasi-monoenergetic neutron beams at the EC-IRMM Van der Graaf accelerator for calibration of the UAB PADC based neutron dosimeter, Radiat. Meas. 44 (2009) 981, https://doi.org/10.1016/j.radmeas.2009.10.093

K. Turek, J. Bednar y E. Piesch, Determination of the Neutron Angular Response Using a Single Etched Track Detector, Radiat. Prot. Dosim. 59 (1995) 205, https://doi.org/10.1093/oxfordjournals.rpd.a082652

A. El-khatib et al., The development of neutron dosimeter using CR-39 detector, Radiat. Eff. Defects Solids. 128 (1994) 319, https://doi.org/10.1080/10420159408221054

F. Vanhavere, D. Huyskens y L. Struelens, Peripheral neutron and gamma doses in radiotherapy with an 18 MV linear accelerator, Radiat. Prot. Dosim. 110 (2014) 607, https://doi.org/10.1093/rpd/nch135

C. Ongaro et al., Analysis of photoneutron spectra produced in medical accelerators, Phys. Med. Biol. 45 (2000) 55, https://doi.org/10.1088/0031-9155/45/12/101

Downloads

Published

2022-03-01

How to Cite

[1]
J. J. Rodriguez B and I. . Barrutia, “Dosis equivalente ambiental H*(10) por neutrones producidos en un Varian Clinac 2300 mediante detectores tipo CR-39”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 021101 1–, Mar. 2022.