A different approach for the fractional chemical model

Authors

• Khaled Saad Department of Mathematics, Faculty of Arts and Sciences, Najran University, Saudi ArabiaDepartment of Mathematics, Faculty of Applied Science, Taiz University, Taiz, Yemen

Keywords:

Liouville-Caputo operator; fractional isothermal chemical; Legendre polynomials ; spectral collocation method; Newton polynomial interpolation; Newton-Raphson method

Abstract

This article analyzes and compares the two algorithms for the numerical solutions of the fractional isothermal chemical equations (FICEs) based on mass action kinetics for autocatalytic feedback, involving the conversion of a reactant in the Liouville-Caputo sense. The first method is based upon the spectral collocation method (SCM), where the properties of Legendre polynomials are utilized to reduce the FICEs to a set of algebraic equations. We then use the well-known method like Newton-Raphson method (NRM) to solve the set of algebraic equations. The second method is based upon the properties of Newton polynomial interpolation (NPI) and the fundamental theorem of fractional calculus. We utilize these methods to construct the numerical solutions of the FICEs. The accuracy and effectiveness of these methods is satisfied graphically by combining the numerical results and plotting the absolute error. Also, the absolute errors are tabulated, and a good agreement
found in all cases.

References

R. Caponetto and G. Dongola and L. Fortuna and I. PetraS, ´Fractional order systems: modeling and control applications,

(World Scientific, 2010).

C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle, Fractional- order Systems and Controls: Fundamentals and Applications (Springer Science and Business Media, 2010), https://doi.org/10.1007/978-1-84996-335-0.

J. H. He, Variational iteration method-a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech. 34 (1999) 699. https://doi.org/10.1016/S0020-7462(98)00048-1.

K. M. Saad, E. H. F Al-Sharif, Analytical study for time and time-space fractional Burgers equation, Advances in Difference Equations, 2017 (2017) 300. https://doi.org/10.1186/s13662-017-1358-0.

K. M. Saad, E. H. Al-Shareef, M. S. Mohamed, X. J. Yang, Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, The European Physical Journal Plus, 132 (2018) 23. https://doi.org/10.1140/epjp/i2017-11303-6.

S.-J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004) 499. https://doi.org/10.1016/S0096-3003(02)00790-7.

K. M. Saad, E. H. F AL-Shareef, A. K. Alomari, D. Baleanu, J. F. Gmez-Aguilar, On exact solutions for timefractional Korteweg-de Vries and Korteweg-de Vries-Burgers equations using homotopy analysis transform method, Chinese Journal of Physics 63 (2020) 149. https://doi.org/10.1016/j.cjph.2019.11.004.

A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, Bit Numer Math, 54 (2014) 937. https://doi.org/10.1007/s10543-014-0484-2.

X.-C. Shi, L.-L. Huang, Y. Zeng, Fast Adomian decomposition method for the Cauchy problem of the time-fractional reaction diffusion equation, Adv. Mech. Eng. 8 (2016) 1. https://doi.org/10.1177/1687814016629898.

H. M. Srivastava, and K. M. Saad, New approximate solution of the time-fractional Nagumo equation involving fractional integrals without singular kernel, Appl. Math. Inf. Sci, 14 (2020) 1, http://dx.doi.org/10.18576/amis/140101.

Y. Cenesiz, Y. Keskin, A. Kurnaz, The solution of the Bagley-Torvik equation with the generalized Taylor collocation method, J. Franklin Inst. 347 (2010) 452. https://doi.org/10.1016/j.jfranklin.2009.10.007.

M. M. Khader, K. M. Saad, D. Baleanu, and S. Kumar, A spectral collocation method for fractional chemical clock reactions, Computational and Applied Mathematics, 39 (2020) 324. https://doi.org/10.1007/s40314-020-01377-3.

H. M. Srivastava, K. M. Saad, and M. M. Khader, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos, Solitons & Fractals, 140 (2020) 110174. https://doi.org/10.1016/j.chaos.2020.110174.

M. M. Khader and K. M. Saad, A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method, Chaos Solitons & Fractals 110 (2018) 169, https://doi.org/10.1016/j.chaos.2018.03.018.

M. M. Khader, K. M. Saad, and Z. Hammouch, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Applied Numerical Mathematics, 161 (2021) 137, https://doi.org/10.1016/j.apnum.2020.10.024.

Y. Takeuchi, Y. Yoshimoto, and R. Suda, Second order accuracy finite difference methods for space-fractional partial differential equations, J. Comput. Appl. Math. 320 (2017) 101, https://doi.org/10.1016/j.cam.2017.01.013.

S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Applied Mathematical Modelling, 37 (2013) 5498, https://doi.org/10.1016/j.apm.2012.10.026.

M. M. Khader and K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers equations, The European Physical Journal Plus 133 (2018) 1, https://doi.org/10.1140/epjp/i2018-12191-x.

A. Arafa, A different approach for conformable fractional biochemical reaction-diffusion models, Appl. Math. J. Chin. Univ. 35 (2020) 452, https://doi.org/10.1007/s11766-020-3830-5.

M. Yaseen and M. M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation, Appl. Math. J. Chin. Univ. 35 (2020) 359, https://doi.org/10.1007/s11766-020-3883-y.

K. Maleknejad, M. S. Dehkordi, Numerical solutions of two-dimensional nonlinear integral equations via Laguerre Wavelet method with convergence analysis, Appl. Math. J. Chin. Univ. 36 (2021) 83. https://doi.org/10.1007/s11766-021-3656-2.

O. Tasbozan, A popular reaction-diffusion model fractional Fitzhugh-Nagumo equation: analytical and numerical treatment, Appl. Math. J. Chin. Univ., 36 (2021) 218. https://doi.org/10.1007/s11766-021-3810-x.

S. K. Scott, Transient chaos in a closed chemical system, J. Chem. Phys. 94 (1991) 1134, https://doi.org/10.1063/1.460019.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Vol. 204, Elsevier, 2006).

I. Podlubny, Fractional Differential Equations, (Academic Press, New York 1993).

H. Khalil, R. A. Khan, M. H. Al-Smadi, A. A. Freihat and N. Shawagfeh, New Operational matrix for shifted Legendre polynomials and fractional differential equations with variable coefficients, Punjab Univ. J. Math. 47 (2015) 1,

F. Mohammadi and C. Cattani, A generalized fractional-order Legendre wavelet Tau method for solving fractional differential

equations, J. Comput. Appl. Math. 339 (2018) 306. https://doi.org/10.1016/j.cam.2017.09.031.

F. Mohammadi and S. T. Mohyud-Din, A fractional-order Legendre collocation method for solving the Bagley-Torvik equations, Punjab Univ. J. Math. 269 (2016) 2. https://doi.org/10.1186/s13662-016-0989-x.

H. M. Srivastava, and K. M. Saad, Comparative Study of the Fractional-Order Clock Chemical Model, Mathematics 8 (2020) 1436. https://doi.org/10.3390/math8091436.

N. N. Lebedev, Special Functions and Their Applications (Translated from the Russian by R. A. Silverman), PrenticeHall Incorporated, Englewood Cliffs, New Jersey, 1965; Dover Publications, New York, 1972.

M. M. Khader and A. S. Hendy, The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudo-spectral method, Internat. J. Pure Appl. Math. 74 (2012) 287.

N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos, Solitons & Fractals 73 (2015) 141. https://doi.org/10.1016/j.chaos.2015.01.010.

A. Atangana, S. I. Araz, New Numerical Scheme with Newton Polynomial: Theory, Methods, and Applications, (Academic Press, 2021). H. Safdari, Y. E. Aghdam, and J. F. Gomez-Aguilar, Shifted Chebyshev collocation of the fourth kind with convergence analysis for the spacetime fractional advection-diffusion equation, Engineering with Computers, (2020) 1, https://doi.org/10.1007/s00366-020-01092-x.

K. M. Saad, Comparative study on Fractional Isothermal Chemical Model, Alexandria Engineering Journal, 60 (2021) 3265. https://doi.org/10.1016/j.aej.2021.01.037.

Huitzil´ın Yepez-Mart ´ ´ınez, J. F. Gomez-Aguilar, Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel, Journal of Applied and Computational Mechanics, 6 (2020) 684. https://doi.org/10.22055/JACM.2019.31099.1827.

C. J. Zu´niga-Aguilar, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, and H. M. Romero-Ugaldec, A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations, Chaos, Solitons & Fractals, 126 (2019) 266. https://doi.org/10.1016/j.chaos.2019.06.009.

V. F. Morales-Delgado, J. F. Gomez-Aguilar, K. M. Saad, M. ´A. Khan, and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach, Physica A: Statistical Mechanics and its Applications, 523 (2019) 48. https://doi.org/10.1016/j.physa.2019.02.018.

H. Yepez-Mart ´ Anez, J. F. G ˜ omez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), Journal of Computational and Applied Mathematics, 346 (2019) 247. https://doi.org/10.1016/j.cam.2018.07.023.

S. Abuasad, A. Yildirim, I. Hashim, S. A. Abdul Karim, and J. F. Gomez-Aguilar, Fractional multi-step differential transformed method for approximating a fractional stochastic sis epidemic model with imperfect vaccination, International journal of environmental research and public health, 16 (2019) 973. https://doi.org/10.3390/ijerph16060973.

J. E. Sol´is Perez, J. F. Gomez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons & Fractals 114 (2018) 175. https://doi.org/10.1016/j.chaos.2018.06.032.

2022-01-01

How to Cite

[1]
K. Saad, “A different approach for the fractional chemical model”, Rev. Mex. Fís., vol. 68, no. 1 Jan-Feb, pp. 011404 1–, Jan. 2022.

Section

14 Other areas in Physics