Non-magnetic tight binding disorder effects in the γ sheet of Sr2RuO4.
DOI:
https://doi.org/10.31349/RevMexFis.68.020502Keywords:
triplet reversal time broken state, sheet, strontium ruthenate, non-magnetic disorder, elastic scattering matrix. tiny gap.Abstract
Inspired by the physics of the Miyake - Narikiyo model (MN) for superconductivity in the γ sheet of Sr2RuO4, we set out to investigate numerically the behavior caused by a non-magnetic disorder in the imaginary part of the elastic scattering matrix for an anisotropic tight-binding model. We perform simulations by going from the Unitary to the Born scattering limit, varying the parameter c which is inverse to the strength of the impurity potential. It is found that the unitary and intermedia limits persist for different orders of magnitude in simulating the disorder concentration. Subsequently and in order to find the MN tiny gap, we perform a numerical study of the unitary limit as a function of disorder concentration, to find the tiny anomalous gap.
References
Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, JG. and Lichtenberg, F. 1994. Superconductivity in a layered perovskite without copper. Nature (London). 372:532-534. DOI: https://doi.org/10.1038/372532a0
Bergemann, C., Mackenzie, A., Julian, S. J., Forsythe D. & Ohmichi E. 2003 Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4, Advances in Physics, 52:7, 639-725, DOI: 10.1080/00018730310001621737
Suzuki M, Tanatar MA, Kikugawa N, Mao ZQ, Maeno Y, Ishiguro T. Universal heat transport in Sr2RuO4. Phys Rev Lett. 2002 Jun 3;88(22):227004. doi: 10.1103/PhysRevLett.88.227004
Rice, TM. and Sigrist, M. 1995. Sr2RuO4: an electronic analogue of 3He? Journal of Physics: Con-densed Matter. 7(47):L643-L648
Ishida, K., Mukuda, H., Kitaoka, Y., Asayama, K., Mao, ZQ., Mori, Y. and Maeno, Y. 1998. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature (London). 396:658-660.
Luke, GM., Fudamoto, Y., Kojima, KM., Larkin, MI., Merrin, J., Nachumi, B., Uemura, YJ., Maeno, Y., Mao, ZQ., Mori, Y., Nakamura, H. and Sigrist, M. 1998. Time-reversal symmetry-breaking super-conductivity in Sr2RuO4. Nature (London). 394(6693):558-561. DOI: https://doi.org/10.1038/29038.
Duffy, JA., Hayden, SM., Maeno, Y., Mao, Z., Kulda, J. and McIntyre, GJ. 2000. Polarized-neutron scattering study of the Cooper-pair moment in Sr2RuO4. Physical Review Letters. 85(25):5412-5415. DOI: https://doi.org/10.1103/PhysRevLett.85.5412
Mackenzie, AP. and Maeno, Y. 2003. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. (Review Article) Reviews of Modern Physics. 75(2):657-712.
Hicks, CW., Brodsky, DO., Yelland, EA., Gibbs, AS., Bruin, JAN., Barber, ME., Edkins, SD., Nishimura, K., Yonezawa, S., Maeno, Y. and Mackenzie, AP. 2014. Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science. 344(6181):283-285. DOI: https://doi.org/10.1126/sci-ence.1248292
Benhabib, S., Lupien, C., Paul, I., Berges, L., Dion, M., Nardone, M., Zitouni, A., Mao, ZQ., Maeno, Y., Georges, A., Taillefer, L. and Proust, C. 2020. Ultrasound evidence for a two-component super-conducting order parameter in Sr2RuO4. Nature Physics. 6 pages. DOI: https://doi.org/10.1038/s41567-020-1033-3
Ghosh, S., Shekhter, A., Jerzembeck, F., Kikugawa, N., Sokolov, DA., Brando, M., Mackenzie, AP., Hicks, CW. and Ramshaw, BJ. 2020. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nature Physics. 9 pages. DOI: https://doi.org/10.1038/s41567-020-1032-4
Grinenko, V., Das, D., Gupta, R. et al. Unsplit superconducting and time reversal symmetry break-ing transitions in Sr2RuO4 under hydrostatic pressure and disorder. Nat Commun 12, 3920 (2021). https://doi.org/10.1038/s41467-021-24176-8
Miyake, K and Narikiyo, O. 1999. Model for Unconventional Superconductivity of Sr2RuO4, Effect of Impurity Scattering on Time-Reversal Breaking Triplet Pairing with a Tiny Gap. Phys. Rev. Lett. 83, 1423. DOI: https://doi.org/10.1103/PhysRevLett.83.1423
Walker, MB. and Contreras, P. 2002. Theory of elastic properties of Sr2RuO4 at the supercon-ducting transition temperature. Physical Review B. 66(21):214508. DOI: https://doi.org/10.1103/PhysRevB.66.214508
a] P. Contreras, J. Florez and Rafael Almeida. 2016. Symmetry Field Breaking Effects in Sr2RuO4. Revista Mexicana de Física. Vol. 62, pp. 442-449. arXiv: arXiv:1812.06494v1 [cond-mat.supr-con]
Schachinger, E. and Carbotte J. P. 2003. Residual absorption at zero temperature in d-wave su-perconductors Phys. Rev. B 67, 134509. DOI: https://doi.org/10.1103/PhysRevB.67.134509
Zhitomirsky, M. and Rice, T. 2001. Interband proximity effect and nodes of superconducting gap in Sr2RuO4. Phys. Rev. Lett. 87, 057001. DOI: https://doi.org/10.1103/PhysRevLett.87.057001
Contreras Pedro, Osorio Dianela. 2021. Scattering Due to Non-magnetic Disorder in 2D Aniso-tropic d-wave High Tc Superconductors, Engineering Physics. Vol. 5, No. 1, 2021, pp. 1-7. doi: 10.11648/j.ep.20210501.11 arXiv: arXiv:2107.01374v1 [cond-mat.supr-con]
J. M. Ziman. 1979. Models of Disorder, Cambridge.
Contreras, P. Walker MB, and Samokhin K. 2004. Determining the superconducting gap struc-ture in from sound attenuation studies below Tc Phys. Rev. B, 70: 184528, 2004. https://doi.org/10.1103/PhysRevB.70.184528
a] P. Contreras. 2011. Electronic heat transport for a multiband superconducting gap in Sr2RuO4 Rev. Mex. Fis. 57(5) pp. 395-399 arXiv: arXiv:1812.06449v1 [cond-mat.supr-con]
b] P. Contreras, et al. 2014. A numerical calculation of the electronic specific heat for the com-pound Sr2RuO4 below its superconducting transition temperature. Rev. Mex. Fis. 60(3). pp 184-189. arXiv: arXiv:1812.06493v1 [cond-mat.supr-con]
V. Mineev and K. Samokhin. 1999. Introduction to Unconventional Superconductivity. Gordon and Breach Science Publishers.
Yu. Pogorelov and V. Loktev. 2018. Conventional and unconventional impurity effects in super-conductors Low Temperature Physics, 44:1, 2018. https://aip.scitation.org/doi/10.1063/1.5020892
Hirschfeld, PJ., Wölfle, P. and Einzel, D. 1988. Consequences of resonant impurity scattering in anisotropic superconductors: Thermal and spin relaxation properties. Physical Review B. 37(1):83. DOI: https://doi.org/10.1103/PhysRevB.37.83
K. Maki and H. Won. 1996 Ann. Phys. (Leipzig) 5, 320.
L. S. Borkowski, P. J. Hirschfeld, and W. O. Putikka. 1995 Phys. Rev. B 52, 3856.
Pethick CJ, Pines D. 1986. Transport processes in heavy-fermion superconductors. Phys Rev Lett. 1986 Jul 7;57(1):118-121. doi: 10.1103/PhysRevLett.57.118
Schmitt-Rink S, Miyake K, Varma CM. Transport and thermal properties of heavy-fermion super-conductors: A unified picture. Phys Rev Lett. 1986 Nov 17;57(20):2575-2578. doi: 10.1103/PhysRevLett.57.2575
AV Balatsky , MI Salkola, and A. Rosengren. 1995. Impurity-induced virtual bound states in d-wave superconductors. Phys Rev B 1995 Jun 1;51(21):15547-15551. doi: 10.1103/physrevb.51.15547
L. P. Pitaevskii. 2008. Superfluid Fermi liquid in a unitary regime Physics Uspekhi v. 51 p. 603.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Pedro L. Contreras E., Dianela Osorio, R. Ramazanov
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.