Non-magnetic tight binding disorder effects in the γ sheet of Sr2RuO4.

Authors

DOI:

https://doi.org/10.31349/RevMexFis.68.020502

Keywords:

triplet reversal time broken state,  sheet, strontium ruthenate, non-magnetic disorder, elastic scattering matrix. tiny gap.

Abstract

Inspired by the physics of the Miyake - Narikiyo model (MN) for superconductivity in the γ sheet of Sr2RuO4, we set out to investigate numerically the behavior caused by a non-magnetic disorder in the imaginary part of the elastic scattering matrix for an anisotropic tight-binding model. We perform simulations by going from the Unitary to the Born scattering limit, varying the parameter c which is inverse to the strength of the impurity potential. It is found that the unitary and intermedia limits persist for different orders of magnitude in simulating the disorder concentration. Subsequently and in order to find the MN tiny gap, we perform a numerical study of the unitary limit as a function of disorder concentration, to find the tiny anomalous gap.

Author Biography

Pedro L. Contreras E., Universidad de Los Andes, Mérida, 5001, Venezuela

Physics and Math lecturer (Professor)  with more than 15 years of lecturing and research experience in colleges and universities and with an eye on a science teacher position, willing to incorporate my learning multicultural experience.  

In previous roles, co-developed research and mentorship resulting in peer-review publications and tech. reports.

Winner of the "Van Kranendonk Teaching Assistant Award" at the University of Toronto recognizing outstanding contributions to the teaching of physics at the undergraduate level in 2003.

References

Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, JG. and Lichtenberg, F. 1994. Superconductivity in a layered perovskite without copper. Nature (London). 372:532-534. DOI: https://doi.org/10.1038/372532a0

Bergemann, C., Mackenzie, A., Julian, S. J., Forsythe D. & Ohmichi E. 2003 Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4, Advances in Physics, 52:7, 639-725, DOI: 10.1080/00018730310001621737

Suzuki M, Tanatar MA, Kikugawa N, Mao ZQ, Maeno Y, Ishiguro T. Universal heat transport in Sr2RuO4. Phys Rev Lett. 2002 Jun 3;88(22):227004. doi: 10.1103/PhysRevLett.88.227004

Rice, TM. and Sigrist, M. 1995. Sr2RuO4: an electronic analogue of 3He? Journal of Physics: Con-densed Matter. 7(47):L643-L648

Ishida, K., Mukuda, H., Kitaoka, Y., Asayama, K., Mao, ZQ., Mori, Y. and Maeno, Y. 1998. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature (London). 396:658-660.

Luke, GM., Fudamoto, Y., Kojima, KM., Larkin, MI., Merrin, J., Nachumi, B., Uemura, YJ., Maeno, Y., Mao, ZQ., Mori, Y., Nakamura, H. and Sigrist, M. 1998. Time-reversal symmetry-breaking super-conductivity in Sr2RuO4. Nature (London). 394(6693):558-561. DOI: https://doi.org/10.1038/29038.

Duffy, JA., Hayden, SM., Maeno, Y., Mao, Z., Kulda, J. and McIntyre, GJ. 2000. Polarized-neutron scattering study of the Cooper-pair moment in Sr2RuO4. Physical Review Letters. 85(25):5412-5415. DOI: https://doi.org/10.1103/PhysRevLett.85.5412

Mackenzie, AP. and Maeno, Y. 2003. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. (Review Article) Reviews of Modern Physics. 75(2):657-712.

Hicks, CW., Brodsky, DO., Yelland, EA., Gibbs, AS., Bruin, JAN., Barber, ME., Edkins, SD., Nishimura, K., Yonezawa, S., Maeno, Y. and Mackenzie, AP. 2014. Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science. 344(6181):283-285. DOI: https://doi.org/10.1126/sci-ence.1248292

Benhabib, S., Lupien, C., Paul, I., Berges, L., Dion, M., Nardone, M., Zitouni, A., Mao, ZQ., Maeno, Y., Georges, A., Taillefer, L. and Proust, C. 2020. Ultrasound evidence for a two-component super-conducting order parameter in Sr2RuO4. Nature Physics. 6 pages. DOI: https://doi.org/10.1038/s41567-020-1033-3

Ghosh, S., Shekhter, A., Jerzembeck, F., Kikugawa, N., Sokolov, DA., Brando, M., Mackenzie, AP., Hicks, CW. and Ramshaw, BJ. 2020. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nature Physics. 9 pages. DOI: https://doi.org/10.1038/s41567-020-1032-4

Grinenko, V., Das, D., Gupta, R. et al. Unsplit superconducting and time reversal symmetry break-ing transitions in Sr2RuO4 under hydrostatic pressure and disorder. Nat Commun 12, 3920 (2021). https://doi.org/10.1038/s41467-021-24176-8

Miyake, K and Narikiyo, O. 1999. Model for Unconventional Superconductivity of Sr2RuO4, Effect of Impurity Scattering on Time-Reversal Breaking Triplet Pairing with a Tiny Gap. Phys. Rev. Lett. 83, 1423. DOI: https://doi.org/10.1103/PhysRevLett.83.1423

Walker, MB. and Contreras, P. 2002. Theory of elastic properties of Sr2RuO4 at the supercon-ducting transition temperature. Physical Review B. 66(21):214508. DOI: https://doi.org/10.1103/PhysRevB.66.214508

a] P. Contreras, J. Florez and Rafael Almeida. 2016. Symmetry Field Breaking Effects in Sr2RuO4. Revista Mexicana de Física. Vol. 62, pp. 442-449. arXiv: arXiv:1812.06494v1 [cond-mat.supr-con]

Schachinger, E. and Carbotte J. P. 2003. Residual absorption at zero temperature in d-wave su-perconductors Phys. Rev. B 67, 134509. DOI: https://doi.org/10.1103/PhysRevB.67.134509

Zhitomirsky, M. and Rice, T. 2001. Interband proximity effect and nodes of superconducting gap in Sr2RuO4. Phys. Rev. Lett. 87, 057001. DOI: https://doi.org/10.1103/PhysRevLett.87.057001

Contreras Pedro, Osorio Dianela. 2021. Scattering Due to Non-magnetic Disorder in 2D Aniso-tropic d-wave High Tc Superconductors, Engineering Physics. Vol. 5, No. 1, 2021, pp. 1-7. doi: 10.11648/j.ep.20210501.11 arXiv: arXiv:2107.01374v1 [cond-mat.supr-con]

J. M. Ziman. 1979. Models of Disorder, Cambridge.

Contreras, P. Walker MB, and Samokhin K. 2004. Determining the superconducting gap struc-ture in from sound attenuation studies below Tc Phys. Rev. B, 70: 184528, 2004. https://doi.org/10.1103/PhysRevB.70.184528

a] P. Contreras. 2011. Electronic heat transport for a multiband superconducting gap in Sr2RuO4 Rev. Mex. Fis. 57(5) pp. 395-399 arXiv: arXiv:1812.06449v1 [cond-mat.supr-con]

b] P. Contreras, et al. 2014. A numerical calculation of the electronic specific heat for the com-pound Sr2RuO4 below its superconducting transition temperature. Rev. Mex. Fis. 60(3). pp 184-189. arXiv: arXiv:1812.06493v1 [cond-mat.supr-con]

V. Mineev and K. Samokhin. 1999. Introduction to Unconventional Superconductivity. Gordon and Breach Science Publishers.

Yu. Pogorelov and V. Loktev. 2018. Conventional and unconventional impurity effects in super-conductors Low Temperature Physics, 44:1, 2018. https://aip.scitation.org/doi/10.1063/1.5020892

Hirschfeld, PJ., Wölfle, P. and Einzel, D. 1988. Consequences of resonant impurity scattering in anisotropic superconductors: Thermal and spin relaxation properties. Physical Review B. 37(1):83. DOI: https://doi.org/10.1103/PhysRevB.37.83

K. Maki and H. Won. 1996 Ann. Phys. (Leipzig) 5, 320.

L. S. Borkowski, P. J. Hirschfeld, and W. O. Putikka. 1995 Phys. Rev. B 52, 3856.

Pethick CJ, Pines D. 1986. Transport processes in heavy-fermion superconductors. Phys Rev Lett. 1986 Jul 7;57(1):118-121. doi: 10.1103/PhysRevLett.57.118

Schmitt-Rink S, Miyake K, Varma CM. Transport and thermal properties of heavy-fermion super-conductors: A unified picture. Phys Rev Lett. 1986 Nov 17;57(20):2575-2578. doi: 10.1103/PhysRevLett.57.2575

AV Balatsky , MI Salkola, and A. Rosengren. 1995. Impurity-induced virtual bound states in d-wave superconductors. Phys Rev B 1995 Jun 1;51(21):15547-15551. doi: 10.1103/physrevb.51.15547

L. P. Pitaevskii. 2008. Superfluid Fermi liquid in a unitary regime Physics Uspekhi v. 51 p. 603.

Downloads

Published

2022-03-01

How to Cite

[1]
P. L. Contreras E., D. Osorio, and R. Ramazanov, “Non-magnetic tight binding disorder effects in the γ sheet of Sr2RuO4”., Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 020502 1–, Mar. 2022.