Linear and nonlinear optical properties in single CuIn1−xGaxSe2 nanowire: Effects of size, incident intensity, relaxation time and Ga concentration

Authors

  • Mourad Rzaizi Cadi Ayyad University,Faculty of Sciences Semlalia, Physics Department, Marrakech, Morocco 40000 P.O.Box 2390.
  • M. S. EL Kazdir Cadi Ayyad University,Faculty of Sciences Semlalia, Physics Department
  • M. El Khou Cadi Ayyad University,Faculty of Sciences Semlalia, Physics Department
  • A. Oueriagli Cadi Ayyad University,Faculty of Sciences Semlalia, Physics Department
  • D. Abouelaoualim Cadi Ayyad University,Faculty of Sciences Semlalia, Physics Department

DOI:

https://doi.org/10.31349/RevMexFis.68.031001

Keywords:

nanowires, nonlinear optical susceptibility, polrisation, optical absorption, Refractive index, quantum confinement

Abstract

The linear and nonlinear optical properties of CuIn1−xGaxSe2 free standing nanowire have been studied by employing the compact-density matrix formalism and the effective mass approximation. Considering the system under the effect of the polarization vector of the incident light in both cases perpendicular and parallel to the axis of the nanowire, the systematic theoretical investigation contains results with all possible combinations of the involved parameters, such as incident light intensity, relaxation time, nanowire radius and Ga concentration. Our results show that in the case of the polarization vector perpendicular to the nanowire axis, the linear and nonlinear absorption coefficient and refractive index changes can be controlled by changing the nanowire radius, and the effect of Ga concentration is clearly apparent. In contrast, polarization along the nanowire axis allows for a very large absorption coefficient and control of the optical properties through the height, but minimal effect on the transition energy. The increase of the relaxation time as well as the intensity of the incident light has a major role in the nonlinearity effects, while the Ga concentration and the size of the structure influence the amplitude and the transition energy shift.

References

B. K. Hughes, J. M. Luther and M. C. Beard, ACS Nano, 6 (2012) 4573, https://doi.org/10.1021/nn302286w.

Yong K. et al., Nano Lett. 6 (2006) 599, https://doi.org/10.1021/nl052189o.

D. Abouelaoualim, Acta Phys. Pol. A, 112 (2007) 49, https://doi.org/10.12693/APHYSPOLA.112.49.

A. Davydov, Semiconductor Nanowires: Opportunities and Challenges, NIST workshop on WWW, https://www.nist.gov/system/files/documents/mml/msed/thermodynamics kinetics/Davydov-SemiconductorNanowires.pdf

A. I. Hochbaum and P. Yang, Semiconductor Nanowires for Energy Conversion, Nano Lett. Pol. A, 10 (2010) 529-1536,

https://doi.org/10.1021/cr900075v.

M. S. Tame et al., Nat. Phys. 9 (2013) 329, https://doi.org/10.1038/nphys2615.

C. Sikorski and U. Merkt, Phys. Rev. Lett. 62 (1989) 2164, https://doi.org/10.1103/PhysRevLett.62.2164.

R. C. Ashoori et al., Phys. Rev. Lett. 71 (1993) 613, https://doi.org/10.1103/PhysRevLett.71.613.

W. Y. Ruan, Y. Y. Liu, C. G. Bao, and Z. Q. Zhang, Phys. Rev. B 51 (1995) 7942, https://doi.org/10.1103/PhysRevB.51.7942.

U. De Giovannini, F. Cavaliere, R. Cenni, M. Sassetti, and B. Kramer, Phys. Rev. B 77 (2008) 035325, https://doi.org/10.1103/PhysRevB.77.035325.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High performance silicon nanowire field effect transistors, Nan. Lett. 3 (2003) 149, https://doi.org/10.1021/nl025875l.

Y. Huang, X. Duan, and C. M. Lieber, Nanowires for integrated multicolor nanophotonics, Small 1 , (2005) 142-147, https://doi.org/10.1002/smll.200400030.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowires nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293 (2001) 1289, https://doi.org/10.1126/science.1062711.

G. Zheng, W. Lu, S. Jin, and C. M. Lieber, Synthesis and fabrication of highperformance n-type silicon nanowire transistors, Adv. Mater., 16 (2004) 1890, https://doi.org/10.1002/adma.200400472.

F. Qian et al., Gallium nitride-based nanowire radial heterostructures for nanophotonics, Nano. Lett., 4 (2004) 1975, https://doi.org/10.1021/nl0487774.

C. Y. Nam et al., Diameter-dependent electromechanical properties of GaN nanowires, Nano. Lett., 6 (2006) 153, https://doi.org/10.1021/nl051860m.

Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, and M. Moskovits, Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it, Nan. Lett., 4 (2004) 403, https://doi.org/10.1021/nl034968f.

G. Shen and D. Chen ,One-Dimensional Nanostructures and Devices of II-V Group Semiconductors, Nanoscale Res Lett., 4 (2009) 779, https://doi.org/10.1007/s11671-009-9338-2.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science 293 (2001) 1455, https://doi.org/10.1126/science.1062340.

A. Casadei et al., Polarization response of nanowires a la carte, Sci. Rep. 5 (2015) 7651, https://doi.org/10.1038/srep07651.

M. Heiss and A. Fontcuberta i Morral, Fundamental limits in the external quantum efficiency of single nanowire solar cells,

Applied Physics Letters, 99 (2011) 263102, https://doi.org/10.1063/1.3672168.

G. Chen et al., Optical antenna effect in semiconducting nanowires, Nano Letters 8 (2008) 1341, https://doi.org/10.1021/nl080007v.

S. Wagner, J. Shay, P. Migliorato and H. Hasper, Appl. Phys.Lett., 25 (1974) 434, https://doi.org/10.1063/1.1655537.

H.W. Schock and R.Noufi, Prog. Photovoltaics, 8 (2000) 151, https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1h151::AID-PIP302i3.0.CO;2-Q.

P. Jackson et al., Prog. Photovoltaics, 19 (2011) 894, https://doi.org/10.1002/pip.1078.

Q. Cao et al., Adv. Energy Mater. 1 (2011) 845, https://doi.org/10.1002/aenm.201100344.

A. Chirila et al., Nat. Mater., 10 (2011) 857, https://doi.org/10.1038/nmat3122.

J. Tang, Z. Huo, S. Brittman, H. Gao and P. Yang, Nat. Nanotechnol. 6 (2011) 568, https://doi.org/10.1038/nnano.2011.139.

A. Segev, A. Saar, J. Oiknine-Schlesinger and E. Ehrenfreund, Superlattices Microstruct. 19 (1996) 47, https://doi.org/10.1006/spmi.1996.0007.

N. Sei, H. Ogawa and K. Yamada, Opt. Lett. 34 (2009) 1843, https://doi.org/10.1364/OL.34.001843.

U. Woggon, Optical Properties of Semiconductor Quantum Dots Springer-Verlag, Berlin, (1997), https://link.springer.com/book/10.1007/BFb0119351.

S. Nizamoglu and H. V. Demir, Opt. Express 16 (2008) 3515, https://doi.org/10.1364/OE.16.003515.

W. Xie, J. Phys.: Condens. Matter 20 (2008) 365213, https://doi.org/10.1088/0953-8984/20/36/365213.

M. Sahin, Phys. Rev. B 77 (2008) 045317, https://doi.org/10.1103/PhysRevB.77.045317.

S. Yilmaz and H. Safak, Int. J. (Mod. Phys. B) 23 (2009) 2127, https://doi.org/10.1142/S0217979209052030.

Y.C. Zhou, G.-P. He and Z.-M. Wang, Phys. Lett. A 229 (1997) 379, https://doi.org/10.1016/S0375-9601(97)00169-2.

R. W. Boyd, Nonlinear Optics Academic, San Diego, (2003), https://www.elsevier.com/books/nonlinear-optics/boyd/978-0-12-121682-5.

P. Kumari, S. Sinha, and L. K. Mishra, A theoretical evaluation of changes of refractive index as a function of photon energy for different incident optical intensities and fixed length of quantum wire, Journal of Pure Applied and Industrial Physics, 7 (2017) 264, http://physics-journal.org/dnload/Priyanka-KumariSangeeta-Sinha-and-L-K-Mishra/PHSV07I06P0275.pdf.

G. Liu, K. Guo, L. Xie, Z. Zhang, and L. Lu, Tunability of linear and nonlinear optical absorption in laterally-coupled AlxGa1-xAs/GaAs quantum wires, Journal of Alloys and Compounds, 746 (2018) 653, https://doi.org/10.1016/j.jallcom.2018.02.333.

N. Arunachalam, A. John Peter, and C. K. Yoo, Exciton optical absorption coefficients and refractive index changes in a strained InAs/GaAs quantum wire: The effect of the magnetic field, Journal of Luminescence, 132 (2012) 1311, https://doi.org/10.1016/J.JLUMIN.2012.01.003.

M. Karimi and M. Hosseini, Electric and magnetic field effects on the optical absorption of elliptical quantum wire, Superlattices and Microstructures, 111 (2017) 96, https://doi.org/10.1016/j.spmi.2017.06.019.

G. Rezaei, M.R.K. Vahdani and B. Vaseghi, Physica B, 406, (2011) 1488, https://doi.org/10.1016/j.physb.2011.01.053.

M.R.K. Vahdani, The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system, Superlattices Microstruct. 76 (2014) 326, https://doi.org/10.1016/j.spmi.2014.09.023.

Robert W. Boyd, Nonlinear Optics (Second Edition), Academic Press, (2003) 2-3.

A. El Kadadra, K. Fellaoui, D. Abouelaoualim and A. Oueriagli, Optical absorption coefficients in GaN/Al(Ga)N double inverse parabolic quantum wells under static external electric field, Mod. Phys. Lett. B 30 (2016) 1650165, https://doi.org/10.1142/S0217984916501657.

M.R.K. Vahdani and G. Rezaei, Phys. Lett. A, 373 (2009) 3079, https://doi.org/10.1016/j.physleta.2009.06.042.

B. Cakir, Y. Yakar and A. Ozmen, J. Lumin. 132 (2012) 2659, https://doi.org/10.1016/j.jlumin.2012.03.065.

W. Xie, Physica B 405 (2010) 3436, https://doi.org/10.1016/j.physb.2010.05.019.

K. Fellaoui, A., Oueriagli and D.Abouelaoualim, Indian J.Phys. 93 (2019) 1353, https://doi.org/10.1007/s12648-019-01378-x.

K.J. Kuhn et al., J. Appl. Phys., 70 (1991) 5010, https://doi.org/10.1063/1.349005.

D. Ahn and S.L Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field, IEEE J. Quantum Electron., QE-23 (1987) 2196, https://doi.org/10.1109/JQE.1987.1073280.

G. Rezaei, M.R.K. Vahdani and M. Barati, Polaron effects on the intersubband optical absorption coefficient and refractive index changes of an infinite confining potential quantum box, J. Nanoelectron. Optoelectron. 3, (2008) 159. https://doi.org/10.1166/jno.2008.208.

M. Kouhi, Nonlinear optical absorption in the core shell nanowire, International Journal of Modern Physics B 31 (2017) 1750164, https://doi.org/10.1142/S0217979217501648.

A. Zamani, Gh. Safarpour, L. Safaei, E. Niknam and M. Novzari, The linear and nonlinear optical properties of a bulged GaAs nanowire, Superlattices and Microstructures 81 (2015) 129, https://doi.org/10.1016/j.spmi.2015.01.023.

Gh. Safarpour, M. Novzari, M.A. Izadi and S. Yazdanpanahi, The linear and nonlinear optical properties of GaAs/GaAlAs

nanowire superlattices, Superlattices and Microstructures 75 (2014) 725, https://doi.org/10.1016/j.spmi.2014.08.020.

M. Solaimani, Nonlinear optical absorption of a two electron GaN/AlN constant total effective radius multi-shells quantum rings, Journal of Nonlinear Optical Physics and Materials 23 (2014) 1450050, https://doi.org/10.1142/S0218863514500507.

M. Tshipa, Optical Properties of GaAs Nanowires with an Electric Potential That Varies Inversely with the Square of the Radial Distance, Hindawi Advances in Condensed Matter Physics (2019), Article ID 3478506, https://doi.org/10.1155/2019/3478506.

Downloads

Published

2022-05-01

How to Cite

Rzaizi, Mourad, M. S. EL Kazdir, M. El Khou, A. Oueriagli, and D. Abouelaoualim. 2022. “Linear and Nonlinear Optical Properties in Single CuIn1−xGaxSe2 Nanowire: Effects of Size, Incident Intensity, Relaxation Time and Ga Concentration”. Revista Mexicana De Física 68 (3 May-Jun):031001 1-0. https://doi.org/10.31349/RevMexFis.68.031001.