Non-perturbative field theoretical aspects of graphene and related systems

Authors

  • Juan Angel Casimiro Olivares Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo
  • Ana Julia Mizher Instituto de Física Teórica, U. Estadual Paulista
  • Alfredo Raya Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.31349/RevMexFis.68.040101

Keywords:

Quantum field theoretical, electromagnetic fields, constraining fermions

Abstract

In this article, we review the dynamics of charge carriers in graphene and related 2D systems from a quantum field theoretical point of view. By allowing the electromagnetic fields to propagate throughout space and constraining fermions to move on a 2D manifold, the effective theory of such systems becomes a non-local version of quantum electrodynamics (QED) dubbed in literature pseudo or reduced QED. We review some aspects of the theory assuming the coupling arbitrary in strength. In particular, we focus on the chiral symmetry breaking scenarios and the analytical structure of the fermion propagator in vacuum and under the influence of external agents like a heat bath, in the presence of a Chern-Simons term, anisotropy and in curved space. We briefly discuss the major advances and some new results on this field.

References

V. A. Miransky and I. A. Shovkovy, Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals, Phys. Rept. 576, 1 (2015) https://doi.org/10.1016/j.physrep.2015.02.003

P. R. Wallace, The Band Theory of Graphite Phys. Rev. 71 (9), (1947), 622-634. https://doi.org/10.1103/PhysRev.71.622

G. W. Semenoff, Condensed-Matter Simulation of a ThreeDimensional Anomaly Phys. Rev. Lett. 53, (1984) 2449. https://doi.org/10.1103/PhysRevLett.53.2449

F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the Parity Anomaly. Phys. Rev. Lett. 61, (1988) 2015-2018. https://doi.org/10.1103/PhysRevLett.61.2015

N Dorey, and N. E. Mavromatos QED3 and two-dimensional superconductivity without parity violation Nucl Phys B 386 (1992) 614. https://doi.org/10.1016/0550-3213(92)90632-L

K. Farakos and N. E. Mavromatos Dynamical gauge symmetry breaking and superconductivity in three-dimensional systems Mod Phys Lett A 13 (1998) 1019. https://doi.org/10.1142/S0217732398001091

M. Franz and Z. Tesanovic Algebraic Fermi Liquid from Phase Fluctuations: “Topological” Fermions, Vortex “Berryons,” and QED3 Theory of Cuprate Superconductors Phys Rev Lett 87 (2001) 257003. https://doi.org/10.1103/PhysRevLett.87.257003.

I. F. Herbut, QED3 theory of underdoped high-temperature superconductors Phys Rev B 66 (2002) 094504. https://doi.org/10.1103/PhysRevB.66.094504

M. Franz, Z. Tesanovic, O Vafek QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via an algebraic Fermi liquid Phys Rev B 66 (2002) 054535. https://doi.org/10.1103/PhysRevB.66.054535

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, (2004) 666. https://doi.org/10.1126/science.1102896

Zhang Y, Tan Y-W, Horst L S and Kim P, Experimental observation of the quantum Hall effect and Berry’s phase in graphene Nature 438 (2005), 201. https://doi.org/10.1038/nature04235

K. S. Novoselov, et al., Two-dimensional gas of massless Dirac fermions in graphene Nature 438, (2005) 197-200. https://doi.org/10.1038/nature04233

A. Geim, and K. Novoselov, The rise of graphene, Nature Mater 6, (2007) 183. https://doi.org/10.1038/nmat1849

C. J. Burden, J. Praschifka, C. D. Roberts, Photon polarization tensor and gauge dependence in three-dimensional quantum electrodynamics, Phys. Rev. D 46(6), (1992) 2695-2702. https://doi.org/10.1103/physrevd.46.2695

E. Marino, Quantum Field Theory Approach to Condensed Matter Physics, (Cambridge University Press, Cambridge, UK, 2017).

E. Marino, Quantum electrodynamics of particles on a plane and the Chern-Simons theory, Nucl. Phys. B 408, (1993) 551- 564. https://doi.org/10.1016/0550-3213(93)90379-4

J. Gonzalez, F. Guinea and M. A. H. Vozmediano, NonFermi liquid behavior of electrons in the half filled honeycomb lattice (A Renormalization group approach), Nucl. Phys. B 424 (1994), 595-618. https://doi.org/10.1016/0550-3213(94)90410-3

D. Tong, The Quantum Hall Effect, Lecture Notes, https://www.damtp.cam.ac.uk/user/tong/qhe/qhe.pdf

R. L. P. G. do Amaral and E. C. Marino, Canonical quantization of theories containing fractional powers of the d’Alembertian operator, J. Phys. A 25 (1992), 5183-5200 https://doi.org/10.1088/0305-4470/25/19/026

E. C. Marino, L. O. Nascimento, V. Alves and C. M. Smith, Unitarity of theories containing fractional powers of the d’Alembertian operator,” Phys. Rev. D 90 (2014) no.10, 105003 https://doi.org/10.1103/PhysRevD.90.105003

J. Gonzalez, F. Guinea and M. A. H. Vozmediano, Unconventional Quasiparticle Lifetime in Graphite, Phys. Rev. Lett. 77 (1996), 3589-3592 https://doi.org/10.1103/PhysRevLett.77.3589

J. Gonzalez, F. Guinea and M. A. H. Vozmediano, MarginalFermi-liquid behavior from two-dimensional Coulomb interaction, Phys. Rev. B 59 (1999), 2474-2477 http://doi.org/10.1103/PhysRevB.59.R2474

J. Gonzalez, F. Guinea and M. A. H. Vozmediano, Electron-electron interactions in graphene sheets Phys. Rev. B 63 (2001) 134421 http://doi.org/10.1103/PhysRevB.63.134421

M. A. H. Vozmediano, Renormalization group aspects of graphene, Phil. Trans. Roy. Soc. Lond. A 369 (2011), 2625- 2642 http://doi.org/10.1098/rsta.2010.0383

L. Fernandez, V. Alves, L. O. Nascimento, F. Peña, M. Gomes and E. C. Marino, Phys. Rev. D 102 (2020) no.1, 016020 doi:10.1103/PhysRevD.102.016020 [arXiv:2002.10027 [hepth]].

E. V. Gorbar, V. P. Gusynin and V. A. Miransky, Dynamical chiral symmetry breaking on a brane in reduced QED, Phys. Rev. D 64, (2001) 105028 https://doi.org/10.1103/PhysRevD.64.105028

S. Teber, Electromagnetic current correlations in reduced quantum electrodynamics, Phys. Rev. D 86 (2012) 025005, https://doi.org/10.1103/PhysRevD.86.025005

A. V. Kotikov and S. Teber, Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene, Phys. Rev. D 89, no. 6, (2014) 065038 https://doi.org/10.1103/PhysRevD.89.065038

S. Teber, Two-loop fermion self-energy and propagator in reduced QED3,2, Phys. Rev. D 89, no. 6, (2014) 067702, https://doi.org/10.1103/PhysRevD.89.067702

S. Teber and A. Kotikov, Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids, Phys. Rev. D 97, no.7, (2018) 074004. https://doi.org/10.1103/PhysRevD.97.074004

V. Alves, W. S. Elias, L. O. Nascimento, V. Juričić and F. Peña, “Chiral symmetry breaking in the pseudo-quantum electrodynamics,” Phys. Rev. D 87, no.12, (2013) 125002. https://doi.org/10.1103/PhysRevD.87.125002

A. Kotikov and S. Teber, Critical behaviour of reduced QED4,3 and dynamical fermion gap generation in graphene, Phys. Rev. D 94, no.11, (2016) 114010. https://doi.org/10.1103/PhysRevD.94.114010

L. O. Nascimento, V. Alves, F. Peña, C. M. Smith and E. Marino, Chiral-symmetry breaking in pseudoquantum electrodynamics at finite temperature, Phys. Rev. D 92, (2015) 025018. https://doi.org/10.1103/PhysRevD.92.025018

J. Báez-Cuevas, A. Raya and J. C. Rojas, Chiral symmetry restoration in reduced QED at finite temperature in the supercritical coupling regime, Phys. Rev. D 102 (2020), 056020. https://doi.org/10.1103/ PhysRevD.102.056020

M. E. Carrington, Effect of a Chern-Simons term on dynamical gap generation in graphene, Phys. Rev. B 99 (2019) 115432. https://doi.org/10.1103/PhysRevB.99.115432

J. A. C. Olivares, L. Albino, A. J. Mizher and A. Raya, Influence of a Chern-Simons term in the dynamical fermion masses in reduced or pseudo QED, Phys. Rev. D 102 (2020) no.9, 096023 https://doi.org/10.1103/PhysRevD.102.096023 [arXiv:2009.08484 [hep-ph]].

G. C. Magalhães, V. Alves, E. C. Marino and L. O. Nascimento, Pseudo Quantum Electrodynamics and Chern-Simons theory Coupled to Two-dimensional Electrons, Phys. Rev. D 101 (2020) no.11, 116005 https://doi.org/10.1103/PhysRevD.101.116005.

M. E. Carrington, A. R. Frey and B. A. Meggison, Effect of anisotropy on phase transitions in graphene, Phys. Rev. B 102 (2020) no.12, 125427. https://doi.org/10.1103/PhysRevB.102.125427

P. I. C. Caneda and G. Menezes, Reduced quantum electrodynamics in curved space , Phys. Rev. D103, (2021) 065010. https://doi.org/10.1103/PhysRevD.103.065010

L. D. Landau and I. M. Khalatnikov, The gauge transformation of the Green function for charged particles, Sov. Phys. JETP 2 (1956) 69 [Zh. Eksp. Teor. Fiz. 29 (1955) 89].

E. S. Fradkin, Concerning some general relations of quantum electrodynamics, Zh. Eksp. Teor. Fiz. 29, 258 (1955) [Sov. Phys. JETP 2, 361 (1956)].

A. Bashir, Non-perturbative Fermion Propagator for the Massless Quenched QED3 Phys. Lett. B491, (2000) 280. https://doi.org/10.1016/S0370-2693(00)01043-1

A. Bashir and A. Raya, Landau-Khalatnikov-Fradkin transformations and the fermion propagator in quantum electrodynamics, Phys. Rev. D 66, (2002) 105005. https://doi.org/10.1103/PhysRevD.66.105005

A. Bashir and A. Raya, Fermion propagator in quenched QED3 in the light of the Landau-Khalatnikov-Fradkin transformation, Nucl. Phys. Proc. Suppl. 141, (2005) 259 https://doi.org/10.1016/j.nuclphysbps.2004.12.039

A. Ahmad, J. J. Cobos-Martínez, Y. Concha-Sánchez, and A. Raya, Landau-Khalatnikov-Fradkin transformations in reduced quantum electrodynamics, Phys. Rev. D 93, (2016) 094035. https://doi.org/10.1103/PhysRevD.93.094035

D. Dudal, A. J. Mizher and P. Pais, Exact quantum scale invariance of three-dimensional reduced QED theories, Phys. Rev. D 99 (2019) no.4, 045017- https://doi.org/PhysRevD.99.045017

C. G. Bollini and J. J. Giambiagi, Arbitrary powers of D’Alembertians and the Huygens’ principle, J. Math. Phys. 34 (1993), 610-621 https://doi.org/10.1063/1.530263

A. Coste and M. Luscher, Parity Anomaly and Fermion Boson Transmutation in Three-dimensional Lattice QED, Nucl. Phys. B 323 (1989), 631-659 https://doi.org/10.1016/0550-3213(89)90127-2

C. D. Roberts and A. G. Williams Dyson-Schwinger Equations and the Application to Hadronic Physics Prog. Part. Nucl. Phys. 33 (1994) 477. https://doi.org/10.1016/0146-6410(94)90049-3

M. R. Pennington Swimming with Quarks, J. Phys. Conf. Ser. 18 (2005) 1. https://doi.org/10.1088/1742-6596/18/1/001

J. C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev. 78 (1950) 182 https://doi.org/10.1103/PhysRev.78.182

H. S. Green, A Pre-renormalized quantum electrodynamics, Proc. Phys. Soc. (London) A66, (1953) 873. https://doi.org/10.1088/0370-1298/66/10/303

Y. Takahashi, On the generalized ward identity, Nuovo Cimento 6, (1957) 371. https://doi.org/10.1007/BF02832514

Y. Takahashi, Canonical quantization and generalized Ward relations: Foundation of nonperturbative approach, Print-85- 0421 (Alberta), (1985).

V. Miransky and K. Yamawaki, Conformal phase transition in gauge theories Phys. Rev. D 55, (1997) 5051. https://doi.org/10.1103/PhysRevD.55.5051.

A. Bashir, A. Huet, and A. Raya Gauge dependence of mass and condensate in chirally asymmetric phase of quenched three-dimensional QED Phys. Rev. D 66, (2002) 025029. https://doi.org/10.1103/PhysRevD.66.025029.

K. Raya, A. Bashir, S. Hernandez-Ortiz, A. Raya, and C. D. Roberts, Multiple solutions for the fermion mass function in QED3, Phys. Rev. D88, (2013) 096003. https://doi.org/10.1103/PhysRevD.88.096003

T. Appelquist, M. J. Bowick, E. Cohler, and L. C. R. Wijewardhana Chiral-symmetry breaking in 2+1 dimensions Phys. Rev. Lett. 55 (1985) 1715. https://doi.org/10.1103/PhysRevLett.55.1715.

T. W. Appelquist, M. Bowick, D. Karabali, and L. C. R. Wijewardhana Spontaneous chiral-symmetry breaking in threedimensional QED Phys. Rev. D 33 (1986) 3704. https://doi.org/10.1103/PhysRevD.33.3704.

T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Critical Behavior in (2+1)-Dimensional QED Phys. Rev. Lett. 60 (1988) 2575. https://doi.org/10.1103/PhysRevLett.60.2575

A. Bashir, A. Raya, S. Sánchez-Madrigal and C.D. Roberts, Gauge Invariance of a Critical Number of Flavours in QED3. Few-Body Syst 46 (2009) 229. https://doi.org/10.1007/s00601-009-0069-9.

A. V. Kotikov and S. Teber, Critical Behavior of (2+1)-Dimensional QED: 1/N Expansion, Particles 2020, 3, 345-354. https://doi.org/10.3390/particles3020026

A. V. Kotikov and Sofian Teber, Critical behaviour of (2+1)- dimensional QED: 1/N-corrections, EPJ Web of Conferences 138 (2017), 06005. https://doi.org/10.1051/epjconf/201713806005

A. V. Kotikov and S. Teber, Critical behavior of (2+1)- dimensional QED: 1/Nf corrections in an arbitrary nonlocal gauge, Phys. Rev. D94, (2016) 114011. https://doi.org/10.1103/PhysRevD.94.114011

A. V. Kotikov, V.I. Shilin and S. Teber, Critical behavior of (2+1)-dimensional QED: 1/Nf corrections in the Landau gauge, Phys.Rev.D 94 (2016) 5, 056009. https://doi.org/10.1103/PhysRevD.94.056009

J. A. Casimiro-Olivares Generacion dinámica de Masas en R(P)QED M. Sc. Thesis (In Spanish) UMSNH (2019).

J. S. Ball and T.-W. Chiu Analytic properties of the vertex function in gauge theories. II Phys. Rev. D 22 (1981) 2550. https://doi.org/10.1103/PhysRevD.22.2550

S. Metayer and S. Teber Two-loop mass anomalous dimension in reduced quantum electrodynamics and application to dynamical fermion mass generation e-Print: 2107.07807 [hep-th] https://arxiv.org/abs/2107.07807

A. Ahmad, A. Ayala, A. Bashir, E. Gutierrez and A. Raya, QCD Phase Diagram and the Constant Mass Approximation, J. Phys. Conf. Ser. 651, no.1, (2015) 012018 https://doi.org/10.1088/1742-6596/651/1/012018

A. Khare, Fractional Statistics and Quantum Theory (World Scientific, Singapore, 2005), 2nd ed.

K. I. Kondo and P. Maris, First-order phase transition in three-dimensional QED with Chern-Simons term Phys. Rev. Lett. 74(1995) 18. https://doi.org/10.1103/PhysRevLett.74.18

K. I. Kondo and P. Maris, Spontaneous chiral symmetry breaking in three-dimensional QED with a Chern-Simons term, Phys. Rev. D 52, (1995) 1212. https://doi.org/10.1103/PhysRevD.52.1212

C. P. Hofmann, A. Raya and Saul Sánchez-Madrigal, Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation Phys. Rev. D 82, (2010) 096011. https://doi.org/10.1103/PhysRevD.82.096011

S. Sánchez Madrigal, C. P. Hofmann and A Raya, Dynamical Mass Generation and Confinement in MaxwellChern-Simons Planar Quantum Electrodynamics J. Phys.Conf. Ser. 287 (2011) 012028. https://doi.org/10.1088/1742-6596/287/1/012028

R. F. Ozela, V. Alves, G. C. Magalhães and L. O. Nascimento, Effects of the pseudo-Chern-Simons action for strongly correlated electrons in a plane Phys. Rev. D 105 (2022) no.5, 056004 https://doi.org/10.1103/PhysRevD.105.056004

E. C. Marino and Leandro O. Nascimento and Van S˜rgio Alves and N. Menezes and C. Morais Smith, Quantum-electrodynamical approach to the exciton spectrum in transition-metal dichalcogenides, 2D Materials, 5, 4 (2018). https://doi.org/10.1088%2F2053-1583% 2Faacc3f

D. Dudal, A. J. Mizher and P. Pais, Remarks on the ChernSimons photon term in the QED description of graphene Phys. Rev. D 98 (2018) 065008. https://doi.org/10.1103/PhysRevD.98.065008

G. García Naumis, Electronic properties of 2D materials and its heterostructures: a minimal review , Rev. Mex. Fis. 67 (5), (2021) 1. https://doi.org/10.31349/RevMexFis. 67.050102

K.-I. Kondo, Transverse Ward-Takahashi Identity, Anomaly and Schwinger-Dyson Equation, Int. J. Mod. Phys. A12, (1997) 5651. https://doi.org/10.1142/S0217751X97002978

H.-X. He, F. Khanna and Y. Takahashi, Transverse WardTakahashi identity for the fermion-boson vertex in gauge theories, Phys. Lett. B480, (2000) 222. https://doi.org/ 10.1016/S0370-2693(00)00353-1

H.-X. He, Transverse vector vertex function and transverse Ward-Takahashi relations in QED, Commun. Theor. Phys. 46, (2006) 109. https://doi.org/10.1088/0253-6102/46/1/025

H.-X. He, Transverse ward-takahashi relation for the fermionboson vertex function in four-dimensional abelian gauge theory, Int. J. Mod. Phys. A22, (2007) 2119. https://doi.org/10.1142/S0217751X07036257

K. Johnson and B. Zumino, Gauge Dependence of the WaveFunction Renormalization Constant in Quantum Electrodynamics, Phys. Rev. Lett.3, (1959) 351. https://doi.org/10.1103/PhysRevLett.3.351

B. Zumino, Gauge properties of propagators in quantum electrodynamics, J. Math. Phys. 1, (1960) 1. https://doi. org/10.1063/1.1703632 85. S. Okubo, The gauge properties of Green’s functions in quantum electrodynamics, Nuovo Cim. 15, (1960) 949. https://doi.org/10.1007/BF02860201 86. I. Bialynicki-Birula, On the Gauge Properties of Green’s Functions, Nuovo Cim. 17, (1960) 951. https://doi.org/10.1007/BF02732140

H. Sonoda, On the gauge parameter dependence of QED, Phys. Lett. B 499 (2001) 253. https://doi.org/10.1016/S0370-2693(01)00030-2

L. A. Fernandez-Rangel, A. Bashir, L. X. Gutierrez-Guerrero and Y. Concha-Sánchez, Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED, Phys. Rev. D 93, no. 6, (2016) 065022. https://doi.org/10.1103/PhysRevD.93.065022

N. Ahmadiniaz, A. Bashir and C. Schubert, Multiphoton amplitudes and generalized LKF transformation in Scalar QED, Phys. Rev. D 93 (2016) 4, 045023 https://doi.org/10.1103/PhysRevD.93.045023

A. Kizilersu and M. R. Pennington, Building the Full FermionPhoton Vertex of QED by Imposing Multiplicative Renormalizability of the Schwinger-Dyson Equations for the Fermion and Photon Propagators, Phys. Rev. D 79, (2009) 125020. https://doi.org/10.1103/PhysRevD.79.125020

A. Bashir and A. Raya, Constructing the fermion boson vertex in QED(3), Phys. Rev. D 64, (2001) 105001. https://doi.org/10.1103/PhysRevD.64.105001

A.V. Kotikov and S. Teber Landau-Khalatnikov-Fradkin transformation and the mystery of even ζ-values in Euclidean massless correlators Phys. Rev. D 100, (2019) 105017. https://doi.org/10.1103/PhysRevD.100.105017

A. James, A. V. Kotikov, and S. Teber Landau-KhalatnikovFradkin transformation of the fermion propagator in massless reduced QED Phys. Rev. D 101 (2020) 045011. https://doi.org/10.1103/PhysRevD.101.045011

A. V. Kotikov and S. Teber, Landau-Khalatnikov-Fradkin Transformation and Hatted ζ-Values Phys. Part.Nucl. 51, (2020) 562. https://doi.org/10.1134/S1063779620040425

V. P. Gusynin, A. V. Kotikov, and S. Teber, LandauKhalatnikov-Fradkin transformation in three-dimensional quenched QED Phys. Rev. D 102, (2020) 025013 https://doi.org/10.1103/PhysRevD.102.025013

D. Dudal, F. Matusalem, A. J. Mizher, A. R. Rocha and C. Villavicencio, Half-integer anomalous currents in 2D materials from a QFT viewpoint Sci. Rep. 12 (2022) no.1, 5439 https://doi.org/10.1038/s41598-022-09483-4

Downloads

Published

2022-06-30

How to Cite

[1]
J. A. Casimiro Olivares, A. J. Mizher, and A. Raya, “Non-perturbative field theoretical aspects of graphene and related systems”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040101 1–, Jun. 2022.