Sobre la disipación de energía cinética turbulenta asociada con olas que aún no rompen


  • Aldo Omar Hernández Olivares Centro de Investigación Científica y de Educación Superior de Ensenada
  • F. J. Ocampo Torres CEMIE Oceano A.C.



Nonbreaking waves, monochromatic waves, turbulent kinetic energy dissipation rate, turbulence production, logarithmic layer


The turbulent kinetic energy dissipation is an essential quantity in the study of turbulence in fluids. In particular, on the transference of turbulent energy from large to small scales and determining its state of equilibrium and stationarity. This work has the purpose of understanding turbulence generation by non-breaking waves from turbulent kinetic energy dissipation analysis. Different groups of nonbreaking monochromatic waves with different slopes were mechanically constructed in a laboratory, whereby an acoustic device, the wave orbitals velocities were measure in various depths. Considering the inertial subrange in the power spectrum of components of turbulence velocity, a turbulent kinetic energy dissipation rate was quantified. It was detected that the magnitude of the turbulent kinetic energy dissipation rate increases with the wave slope and that deeper is invariant to axis rotations. It was distinguished that most of the profiles of the turbulent kinetic energy dissipation agree with an atypical logarithmic layer. Finally, a term of turbulence production was introduced, relative to nonbreaking wave orbital velocities. Unlike other turbulence production terms or approximations, it adequately reproduces the values of the turbulent kinetic energy dissipation rate regardless of wave slope, which established that the wave orbitals velocities shear is the generator mechanism of turbulence in a fluid under nonbreaking waves.


A. Anis, and J. N. Moum, Surface wave-turbulence interactions: Scaling ε(z) near the sea surface, J. Phys. Oceanogr. 25 (1995) 2025.

A. Y. Benilov, and B. N. Filyushkin, Applications of the linear filtration methods to the fluctuation analysis in the sea upper layer, Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transl. 6 (1970) 477.

A. V. Babanin, and B. K. Haus, On the existence of water turbulence induced by nonbreaking surface waves, J. Phys. Oceanogr. 39 (2009) 2675,

A. E. Gargett, P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams, A composite spectrum of vertical shear in the upper ocean, J. Phys. Oceanogr. 11 (1981) 1258.

A. E. Gargett, Observing turbulence with a modified acoustic Doppler current profiler, J. Atmosph. Oceanic Tech. 11 (1994) 1592.

A. Soloviev, N. V. Vershinsky, and V. A. Bezverchnii, Smallscale turbulence measurements in the surface layer of the ocean, Deep-Sea Res. 35 (1988) 1859.

A. O. Hernández Olivares y F. J. Ocampo Torres, La turbulencia asociada con las Velocidades orbitales de olas que aún no rompen, Rev. Mex. Fis. 64 (2018) 619.

A. Wüest, G. Piepke, and D. C. van Senden, Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind forced stratified waters, Limnol. Oceanogr. 45 (2000) 1388.

C. Huang, F. Qiao, and Z. Song, The effect of the wave-induced mixing on the upper ocean temperature in a climate model, Acta Oceanol. Sin. 27 (2008) 104.

C. J. Huang, and F. Qiao, Wave-turbulence interaction and its induced mixing in the upper ocean, J. Geophys. Res. 115 (2010) C04026,

D. J. Dai, F. Qiao, W. Sulisz, L. Han, and A. Babanin, An experiment on the non-breaking surface-wave-induced vertical mixing, J. Phys. Oceanogr. 40 (2010) 2180,

E. A. Terray, M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, Estimates of kinetic energy dissipation under breaking waves, J. Phys. Oceanogr. 26 (1996) 792.

F. Ardhuin, and A. D. Jenkins, On the interaction of surface waves and upper ocean turbulence, J. Phys. Oceanogr. 36 (2006) 551.

F. Feddersen, Breaking wave induced cross-shore tracer dispersion in the surfzone: Model results and scalings, J. Geophys. Res. 112 (2007) C09012,

F. Feddersen, J. H. Trowbridge, and A. J. Williams, Vertical structure of dissipation in the nearshore, J. Phys. Oceanogr. 37 (2007) 1764.

F. Qiao, Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma, Waveinduced mixing in the upper ocean: Distribution and application in a global ocean circulation model, Geophys. Res. Lett. 31 (2004) L11303.

F. Qiao, Y. Yuan, T. Ezer, C. Xia, Y. Yang, X. Lü, and Z. Song, A three-dimensional surface wave-ocean circulation coupled model and its initial testing, Ocean Dyn. 60 (2010) 1339,

F. Veron, F. W. Melville, and L. Lenain, Measurements of ocean surface turbulence and wave-turbulence interactions, J. Phys. Oceanogr. 39 (2009) 2310,

G. T. Csanady, The free surface turbulent shear layer, J. Phys. Oceanogr. 14 (1984) 402. 20. Tennekes, and J. Lumley, A first course in turbulence. (The MIT Press, 1972).

I. B. Savelyev, E. Maxeiner, and D. Chalikov, Turbulence production by nonbreaking waves: Laboratory and numerical simulations, J. Geophys. Res. 117 (2012) C00J13,

J. C. Lamont, and D. S. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid, A. I. Ch. H. J. 16 (1970) 513.

J. Gemmrich, and D. Farmer, Near-surface turbulence in the presence of breaking waves, J. Geophys. Res. 34 (2004) 1067.

J. R. Gemmrich, Strong turbulence in the wave crest region, J. Phys. Oceanogr. 40 (2010) 583.

J. L. Lumley, and E. A. Terray, Kinematic of turbulence convected by a random wave field, J. Phys. Oceanogr. 13 (1983) 2000.

J. O. Hinze, Turbulence (McGraw-Hill, 1975) pp. 790.

M. Ghantous, and A. V. Babanin, Ocean mixing by wave orbital motion, Acta Phys. Slovaca. 64 (2014) 1.

M. A. C. Teixeira, and S. E. Belcher, On the distortion of turbulence by a progressive surface wave, J. Fluid Mech. 458 (2002) 229.

N. S. Oakey, and J. A. Elliott, Dissipation within the surface mixed layer, J. Phys. Oceanogr. 12 (1982) 171.

O. M. Phillips, A note on the turbulence generated by gravity waves, J. Geophys. Res. 66 (1961) 2889,

P. D. Craig, and M. L. Banner, Modeling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr. 24 (1994) 2546.

S. Green, Modelling turbulent air flow in a stand of widely spaced trees, J. Comp. Fluid Dyn. Appl. 5 (1992) 294.

S. Gremes-Cordero, Observations of turbulent kinetic energy dissipation at the Labrador Sea surface layer, The Int. J. Oc. and Clim. Sys. 8 (2017) 161.

S. A. Kitaigorodskii, M. A. Donelan, J. L. Lumley, and E. A. Terray, Wave-turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer, J. Phys. Oceanogr. 13 (1983) 1988.

T. K. Cheung, and R. L. Street, The turbulent layer in the water at an air-water interface, J. Fluid Mech. 194 (1988) 133.

T. R. Osborn, D. M. Farmer, S. Vagle, S. A. Thorpe and M. Cure, Measurements of bubble plumes and turbulence from a submarine, Atmos.-Ocean. 30 (1992) 419.

W. M. Drennan, K. K. Kahma, E. A. Terray, M. A. Donelan, and S. A. Kitaigorodskii, Observations of the enhancement of kinetic energy dissipation beneath breaking wind waves. (IUTAM Symposium on Breaking Waves, M. L. Banner and R. H. J. Grimshaw, Eds., Springer-Verlag, 1991) pp. 95-101.

W. M. Drennan, M. A. Donelan, E. A. Terray, and K. B. Katsaros, Oceanic turbulence measurements in SWADE, J. Phys. Oceanogr. 26 (1996) 808.

X. Lin, S.-P. Xie, X. Chen, and L. Xu, A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and Surface wave mixing, J. Geophys. Res. 111 (2006) C11017,

Z. C. Huang, L. Lenain, W. K. Melville, J. H. Middleton, B. Reineman, N. Statom, and R. M. Mccabe, Dissipation of wave energy and turbulence in a shallow coral reef lagoon, J. Geophys. Res. Oceans. 117 (2012) C03015.

Z. Song, Z. F. Qiao, Y. Yang, and Y. Yuan, An improvement of the too cold tongue in the tropical Pacific with the development of an ocean-wave-atmosphere coupled numerical model, Prog. Nat. Sci. 17 (2007) 576,




How to Cite

A. O. Hernández Olivares and F. J. Ocampo Torres, “Sobre la disipación de energía cinética turbulenta asociada con olas que aún no rompen”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050601 1–, Aug. 2022.