Comparative energy bandgap analysis of zinc and tin based chalcogenide quantum dots


  • Irshad Ahamed Department of Electronics and Communication Engineering, E.G.S. Pillay Engineering College
  • Mansoor Ahamed Chinese Academy of Science at Changchun Institute of Optics
  • K. Sathish Kumar Sri Sivasubramaniya Nadar College of Engineering
  • A. Sivaranjani Nagoya University



Energy bandgap, Tin, zinc, quantum dots


Semiconductors with wide bandgap are crucial for optoelectronic devices and energy applications owing to their electron confinement, high optical transparency and tunable electrical conductivity. Therefore, in this study, the quantum confinement effect of the energy bandgap of chalcogenide semiconductor nanocrystals such as ZnS, ZnSe, ZnTe, SnS, SnSe and SnTe are studied based on the Brus model using the effective mass approximation, the hyperbolic band model and the cohesive energy model. The obtained results indicate that the value of energy bandgap differs from the bulk crystals related to the quantum confinement effect. These verdicts confirm the quantum confinement effects of materials and their potential applications in optoelectronic devices. Theoretical findings are compared with its valid experimental data.


R. Kostic and D. Stoianovic, Optical properties of CdTe/ZnTe core/shell quantum dots suitable for targeted bioimaging, J. Optielectron. Adv. Mater. Rapid Commun. 6 (2012) 121.

M. I. Ahamed, K. S. Kumar, E. E. Anand, A. Sivaranjani, Optical attenuation modelling of PbSexS1−x quantum dots with Vegard’s law and Brus equation use, J. Ovonic Res. 16 (2020) 245.

M. Thambidurai et al., J. Mater. Sci. 45 (2010) 3254,

M. I. Ahamed and K. S. kumar, Studies on Cu2SnS3 quantum dots for O-band wavelength detection, Mater. Sci. Poland 37 (2019) 225,

Fadila Mezraga and Nadir Bouari, Pseudopotential Study of CdTe Quantum Dots: Electronic and Optical Properties, Mater. Res. 22 (2019) e20171146,

Y. Pu and Y. Chen, Solution-processable bipolar hosts based on triphenylamine and oxadiazole derivatives: Synthesis and application in phosphorescent light-emitting diodes, J. Lumin. 170 (2016) 127,

J. L. Alonso J. C. Ferrer, F. Rodríguez-Mas, and S. Fernández de Avila, Improved P 3HT:PCBM photovoltaic cells with twofold stabilized PbS nanoparticles, Optoelectron. Adv. Mater. Rapid Commun. 10 (2016) 634.

C. Kloeffel and D. Loss, Prospects for Spin-Based Quantum Computing in Quantum Dots, Annu. Rev. Cond. Matter Phys. 4 (2013) 51,

A. Pugazhendhi, T. N. Edison, I. Karuppusamy, and B. Kathirvel, Inorganic nanoparticles: A potential cancer therapy for human welfare, Int. J. Pharm. 25 (2018) 104,

G. Jia Y. Pang, J. Ning, U. Banin, and B. Ji, Heavy-MetalFree Colloidal Semiconductor Nanorods: Recent Advances and Future Perspectives, Adv. Mater. 31 (2019) 1900781,

G Xu et al., New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine, Chem. Rev. 116 (2016) 12234,

R. Cai et al., 3D halos assembled from Fe3O4/Au NPs with enhanced catalytic and optical properties, Nanoscale 11 (2019) 20968,

A. Dittmer, R. Izsak, F. Neese, and D. Maganas, Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory, Inorg. Chem. 58 (2019) 9303,

T. Torimoto et al., Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique, J. Phys. Chem. B 105 (2001) 6838,

J. Nanda, B. A. Kuruvilla and D. D. Sarma, Photoelectron spectroscopic study of CdS nanocrystallites, Phys. Rev. B 59 (1999) 7473,

C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, Size-Dependent Chemistry: Properties of Nanocrystals, Chem. Eur. J. 8 (2002) 28,;2-B.

M. I. Ahamed and K. S. Kumar, Modelling of electronic and optical properties of Cu2SnS3 quantum dots for optoelectronics applications, Mater. Sci. Poland 37 (2019) 108,

L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80 (1984) 4403,

A. I. Onyia, H. I. Ikeri, A. N. Nwobodo, Theoretical study of the quantum confinement effects on quantum dots using particle in a box model, J. Ovonic Res. 14 (2018) 49.

B. Pejova, A. Tanusevski, and I. Grozdanov, Semiconducting thin films of zinc selenide quantum dots, J. Solid State Chem. 177 (2004) 4785,

B. Pejova and I. Grozdanov, Three-dimensional confinement effects in semiconducting zinc selenide quantum dots deposited in thin-film form, Mater. Chem. Phys. 90 (2005) 35,

M.I. Ahamed, M.Ahamed, A.Sivaranjani, S. Chockalingam, Energy bandgap studies on copper chalcogenide semiconductor nanostructures using cohesive energy, Chalcogenide letters 18 (2021) 245.

N. Üzar and M. C¸ Arikan, Synthesis and investigation of optical properties of ZnS nanostructures, Bull. Mater. Sci. 34 (2011) 287,

D. W. Palmer, The Semiconductors Information Website,, accessed on April 10th, 2021.

Y. Kumagai, L. A. Burton, A. Walsh, and F. Oba, Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3, and SnS2, Phys. Rev. Appl. 6 (2016) 014009,

A. Ariswan, R. Prasetyowati and H. Sutrisno, Physicochemical properties of Sn(S1−xTex) solid solutions of both massive materials and thin films, Chalcogenide Lett. 15 (2018) 173.

K. Assili, O. Gonzalez, K. Alouani, and X. Vilanova, Structural, morphological, optical and sensing properties of SnSe and SnSe2 thin films as a gas sensing material, Arab. J. Chem. 13 (2020) 1229,

F. Opoku, K. K. Govender, C. G. C. van Sittert, and P. P. Govender, Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: from a hybrid density functional study, New J. Chem. 41 (2017) 8140,

B. M. Bhat and K. A. Shah, Effect of Shell Thickness on Electron and Hole Transmission probabilities of a ZnSe/ZnS Core-Shell Quantum Dot, Mater. Res. 21 (2018) e20180083,

A. Rubio Ponce, D. Olguín, and I. Hernández Calderón, Calculation of the effective masses of II-VI semiconductor compounds, Superfic. Vac´ıo 16 (2003) 26.

A. K. Deb and V. Kumar, Bandgap engineering in semiconducting one to few layers of SnS and SnSe, Phys. Status Solidi 254 (2017) 1600379,

A. Banik, M.Sc. thesis, Jawaharlal Nehru Centre for Advanced Research, 2015.

J. He et al., Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zonemelting method, J. Mater. Chem. A 3 (2015) 19974,

B. Bodo and R. Singha, Structural and Optical Properties of ZnS Quantum Dots synthesized by CBD method, Int. J. Sci. Res. Publ. 6 (2016) 461.

T. Song, J. Y. Cheong, H. Cho, I. D. Kim, and D. Y. Jeon, Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved quantum dots light emitting diodes, RSC Adv. 9 (2019) 15177,

Y. Li, Y. Ding, Y. Zhang, and Y. Qian, Photophysical properties of ZnS quantum dots, J. Phys. Chem. Solids 60 (1999) 13,

R. S. S. Saravanan, D. Pukazhselvan, and C. K. Mahadevan, Studies on the synthesis of cubic ZnS quantum dots, capping and optical-electrical characteristics, J. Alloys Compd. 517 (2012) 139,

Y. Al-Douri, K. D. Verma, and D. Prakash, Optical investigations of blue shift in ZnS quantum dots, Superlattice Microstruct. 88 (2015) 662,

A. Salem et al., Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique, Appl. Sci. 6 (2016) 278,

K. Senthilkumar, T. Kalaivani, S. Kanagesan, and V. Balasubramanian, Synthesis and characterization studies of ZnSe quantum dots, J. Mater. Sci. Mater. Electron. 23 (2012) 2048,

H. Asano, K. Arai, M. Kita, and T. Omata, Synthesis of colloidal Zn(Te,Se) alloy quantum dots, Mater. Res. Express 4 (2017) 106501,

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, Synthesis and characterization of blue emitting ZnSe quantum dots, Microelectron. J. 40 (2009) 641,

P. Kumar and K. Singh, J. Optoelectron. Biomed. Mater., 1 (2009) 59.

V. V. Nikesh and S. Mahamuni, Highly photoluminescent ZnSe/ZnS quantum dots, Semicond. Sci. Technol. 16 (2001) 687,

T. Cheng et al., Aqueous synthesis of high-fluorescence ZnTe quantum dots, J. Mater. Sci. Mater. Electron. 26 (2015) 4062,

L. Baruah, D. K. Abasthi, and S. S. Nath, Fluorescence of ZnTe Quantum Dots Prepared Through Chemical Route, Nanosci. Nanotechnol. Asia 4 (2014) 45,

H. Asano, K. Arai, M. Kita and T. Omata, Synthesis of colloidal Zn (Te,Se) alloy quantum dots, Mater. Res. Express 4 (2017) 106501.

S. K. Patnaik, S. K. Triapthy, and S. N. Sahu, Synthesis and characterization of small size fluorescent LEEH caped blue emission ZnTe quantum dots, Mater. Sci. Poland 35 (2017) 1,

A. Muthuvinayagam, T. Manovah David, and P. Sagayaraj, Investigation on a one-pot hydrothermal approach for synthesizing high quality SnS quantum dots, J. Alloys Compd. 579 (2013) 594,

C. Prastani et al., Synthesis and conductivity mapping of SnS quantum dots for photovoltaic applications, Mater. Sci. Eng. B 178 (2013) 656,

F. Tan et al., Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells, Nanoscale Res. Lett. 6 (2011) 298,

Y. Xu, N. Al-Salim, C. W. Bumby, and R. D. Tilley, Synthesis of SnS Quantum Dots, J. Am. Chem. Soc. 131 (2009) 15990,

J. K. Rath et al., Fabrication of SnS quantum dots for solarcell applications: Issues of capping and doping, Phys. Status Solidi B 251 (2014) 1309,

L. Ling, Q. Zhang, L. Zhu, C. F. Wang, and S. Chen, Interfacial synthesis of SnSe quantum dots for sensitized solar cells, RSC Adv. 5 (2015) 2155,

S. Weiran et al., Tin Selenide (SnSe): Growth, Properties, and Applications, Adv. Sci. 5 (2018) 1700602,

S. Guo et al., Shape-Contrilled Narrow-Gap SnTe Nanostructures: From Nanocubes to Nanorods and Nanowires, J. Am. Chem. Soc. 137 (2015) 15074,

M. V. Kovalenko et al., SnTe Nanocrystals: A New Example of Narrow-Gap Semiconductor Quantum Dots, J. Am. Chem. Soc. 129 (2007) 11354,

S. Ahmed et al., Tin Telluride Quantum Dots as a Novel Saturable Absorber for Q-Switching and Mode Locking in Fiber Lasers, Adv. Opt. Mater. 9 (2021) 2001821,

D. F. García-Gutiérrez et al., Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination, ACS Omega 3 (2018) 393,

A. de Kergommeaux et al., Surface Oxidation of Tin Chalcogenide Nanocrystals Revealed by 119Sn-Mössbauer Spectroscopy, J. Am. Chem. Soc. 134 (2012) 11659,

B. Pejjai et al., Eco-friendly synthesis of SnSe nanoparticles: effect of reducing agents on the reactivity of a Se-precursor and phase formation of SnSe NPs, New J. Chem. 42 (2018) 4843,

C. N. R. Rao, H. S. S. Ramakrishna Matte, R. Voggu, and A. Govindaraj, Recent progress in the synthesis of inorganic nanoparticles, Dalton Trans. 41 (2012) 5089,

Z. Li et al., Synthesis of colloidal SnSe quantum dots by electron beam irradiation, Rad. Phys. Chem. 80 (2011) 1333,

S. Ahmed et al., Advanced Optical Materials 9 (2020) 2001821.

S. A. Corr, Metal oxide nanoparticles, in Nanoscience, edited by P. O’Brien, Vol. 1 (2012), p. 180,

D. K. Dwivedi, D. Dayashankar, and M. Dubey, Synthesis, structural and optical characterization of CdS nanoparticles, J. Ovonic Res. 6 (2010) 57.

S. K. Patra, B. K. Dadhich, B. Bhushan, R. K. Choubey, and A. Priyam, Nonlinear Absorption and Refraction of Highly Monodisperse and Luminescent ZnTe Quantum Dots and Their Self-Assembled Nanostructures: Implications for Optoelectronic Devices, ACS Omega 6 (2021) 31375,




How to Cite

Irshad Ahamed, M. Ahamed, K. S. Kumar, and A. Sivaranjani, “Comparative energy bandgap analysis of zinc and tin based chalcogenide quantum dots”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041601 1–, Jun. 2022.