Microscopic spin orbit analysis for proton+9Be scattering


  • Zakaria Mahmoud Physics Department, Faculty Of Science, King Khalid University, Suadi Arabia.




Proton nucleus scattering, p 9Be scattering; p 9Be analyzin power, microscopic spin orbit potential, folding model


microscopic folded potentials for both the real central and the spin-orbit (SO). For the imaginary central, we used surface Woods-Saxon (WS) potential. We aimed to test the microscopic SO potential based on the M3Y effective nucleon-nucleon (NN) interaction for the light system p+$^9$Be. The present calculation showed that the microscopic SO potential is satisfactory reproduce $A_y$ above 8 MeV and qualitatively reproduced $A_y$ below 8 MeV. In addition, we found that the calculated real central potentials are successfully reproduced the $d\sigma/d\Omega$ for all the considered energies. From the present analysis, we excepted that the present microscopic SO potential could reproduce successfully the $A_y$ for p+nucleus as the incident proton energy increases above 10 MeV.


V. K. Lukyanov et al., Calculations of 8He + p elastic cross sections using a microscopic optical potential, Phys. Rev. C 80 (2009) 024609, https://doi.org/10.1103/PhysRevC.80.024609.

M. Y. H. Farag, E. H. Esmael, and H. M. Maridi, Microscopic study on proton elastic scattering of helium and lithium isotopes at energy range up to 160 MeV/nucleon., EPJ Web of Conferences, 66 (2014) 03025, https://doi.org/10.1051/epjconf/20146603025.

P. Egelhof, Nuclear-matter distributions of halo nuclei from elastic proton scattering in inverse kinematics Eur Phys J A 15, (2002) 27, https://doi.org/10.1140/epja/i2001-10219-7.

A. Pakou, Global description of the 7Li + p reaction at 5.44 MeV/u in a continuum-discretized coupled-channels approach, Phys. Rev. C 96 (2017) 034615, https://doi.org/10.1103/PhysRevC.96.034615.

A. Pakou et al.,Probing the cluster structure of 7Li via elastic scatter- ing on protons and deuterons in inverse kinematics, Phys. Rev. C 94 (2016) 014604, https://doi.org/10.1103/PhysRevC.94.014604.

S. Sakaguchi et al., Analyzing Power in Elastic Scattering of Polarized Protons from Neutron-rich Helium Isotopes Few-Body Syst. 54 (2013) 1393, https://doi.org/10.1007/s00601-013-0617-1.

V. Soukeras et al., Reexamination of 6Li + p elastic scattering in inverse kinematics, Phys. Rev. C 91 (2015) 057601, https://doi.org/10.1103/PhysRevC.91.057601.

S. P. Weppner, A nucleon–nucleus optical model for A ≤ 13 nuclei at 65–75 MeV projectile energy, J Phys G: Nucl Part Phys 45 (2018) 095102, https://doi.org/10.1088/1361-6471/aad53d.

A. Pakou et al., A Microscopic Approach for p+9Be at Energies Between 1.7 to 15 MeV/nucleon, Acta Phys. Polon. B50 (2019)

, https://doi.org/10.5506/aphyspolb.50.1547.

S. Sakaguchi, et al., Analyzing Power in Elastic Scattering of 6He from a Polarized Proton Target at 71 Mev/nucleon, Phys. Rev. C 84, (2011) 024604, https://doi.org/10.1103/PhysRevC.84.024604.

T. Uesaka, et al., Analyzing power for proton elastic scattering from the neutron-rich 6He nucleus, Phys. Rev. C 82 (2010) 021602, https://doi.org/10.1103/PhysRevC.82.021602.

Zakaria M. M. Mahmoud, and Awad A. Ibraheem, and M. A. Hassanain, Microscopic spin-orbit potential for p+6He elastic

scattering, Int. J. Mod. Phys. E 28 (2019) 1950074, https://doi.org/10.1142/S0218301319500745.

D. T. Khoa, E. Khan, G. Colo and N. Van Giai, ´ Folding model analysis of elastic and inelastic proton scattering on sulfur isotopes, Nucl. Phys. A 706, (2002) 61, https://doi.org/10.1016/S0375-9474(02)00866-7.

T. A. D. Brown, et al., Decay studies for states in 9Be up to 11 MeV: Insights into the n+8Be and α+5He cluster structure, Phys. Rev. C 76, (2007) 054605, https://doi.org/10.1103/PhysRevC.76.054605.

P. Papka, et al., Decay path measurements for the 2.429 MeV state in 9Be: Implications for the astrophysical α+α+n reaction, Phys. Rev. C 75 (2007) 045803, https://doi.org/10.1103/PhysRevC.75.045803.

M. Y. H. Farag, E. H. Esmael, and H. M. Maridi, Analysis of proton-9,10,11,12Be scattering using an energy-, density, and isospin-dependent microscopic optical potential, Phys. Rev. C 90 (2014) 034615, https://doi.org/10.1103/PhysRevC.90.034615.

H. M. Maridi, Energy dependence and surface contribution of the folding-model optical potential for nucleon-nucleus scattering at energies up to 1 GeV/nucleon, Phys. Rev. C 100 (2019) 014613, https://doi.org/10.1103/PhysRevC.100.014613.

F. A. Brieva and J. R. Rook, Nucleon-nucleus optical model potential: (III). The spin-orbit component, Nucl. Phys. A 297 (1978) 206, https://doi.org/10.1016/0375-9474(78)90272-5.

H. M. Maridi, A. Pakou, and K. Rusek, The p +9Be elastic scattering below 30 MeV: Optical model analysis and data normalization, Int. J. Mod. Phys. E 30, (2021) 2150024, https://doi.org/10.1142/S0218301321500245.

F. W. Bingham, M. K. Brussel and J. D. Steben, Scattering of 5-15 MeV protons from Be9, Nucl. Phys. 55 (1964) 265, https://doi.org/10.1016/0029-5582(64)90145-2.

N. Keeley, et al., Coherent coupled-reaction-channels analysis of existing and new p + 9 Be data between 1.7 and 15MeV/nucleon, Phys. Rev. C 99 (2019) 014615, https://doi.org/10.1103/PhysRevC.99.014615.

D. J. Baugh, J. A. R. Griffith and S. Roman, Polarization of 17.8 MeV protons elastically scattered by nuclei, Nucl. Phys. B 83 (1966) 481, https://doi.org/10.1016/0029-5582(66)90106-4.

Dao T. Khoa, G. R.Satchler, and W. von Oertzen, Folding analysis of the elastic 6Li+12C scattering: Knock-on exchange effects, energy dependence, and dynamical polarization potential, Phys. Rev. C 51 (1995) 2069, https://doi.org/10.1103/PhysRevC.51.2069.

H. De Vries, C. W. De Jager, and C. De Vries, Nuclear charge and magnetization density distribution parameters from elastic electron scattering, Atom. Data Nucl. Data Tabl. 36 (1987) 495. https://doi.org/10.1016/0092-640X(87)90013-1.

J. Cook, DFPOT - A program for the calculation of double folded potentials, Comput. Phys. Commun. 25 (1982) 125, https://doi.org/10.1016/0010-4655(82)90029-7.

J. Cook, Hermes - an optical model search program including tensor potentials for projectile spins 0 to 3/2 Comput Phys

Commun 31 (1984) 363, https://doi.org/10.1016/0010-4655(84)90020-1.

R. F. Carlson, Proton-Nucleus Total Reaction Cross Sections and Total Cross Sections Up to 1 GeV, At. Data. Nucl. Data Tables 63 (1996) 93, https://doi.org/10.1006/adnd.1996.0010.

V. Soukeras et al., Global study of 9Be + p at 2.72 A MeV, Phys. Rev. C 102 (2020) 064622, https://doi.org/10.1103/PhysRevC.102.064622.




How to Cite

Z. Mahmoud, “Microscopic spin orbit analysis for proton+9Be scattering”, Rev. Mex. Fís., vol. 68, no. 3 May-Jun, pp. 031203 1–, May 2022.