Amplitude and phase measument using reflection polarization mode of a prism-based surface plasmon resonance

Authors

  • Hector Hugo Sánchez Hernández Optica
  • Juan Manuel Peréz-Abarca Universidad del Papaloapan
  • Agustín Santiago Alvarado Universidad Tecnológica de la Mixteca
  • A. Sinue Cruz-Felix Universidad Tecnologica de la Mixteca

DOI:

https://doi.org/10.31349/RevMexFis.68.031304

Keywords:

Surface plasmon, Polarization, Ellipsometry, Film thickness

Abstract

In this paper, the amplitude and phase characteristics of internal reflection of gold nanofilms are investigated using polarization modulation of electromagnetic radiation in the Kretschmann geometry, an excited wavelength of the SPR at 633 nm is considered. The numerical results that are presented in this work are based on the substrate, the variation of the thickness of the dielectric and the type of plasmonic material using gold (Ag), through the ellipsometry parameters Ψ and ∆.

Author Biographies

Juan Manuel Peréz-Abarca, Universidad del Papaloapan

Profesor- Investigador

Agustín Santiago Alvarado, Universidad Tecnológica de la Mixteca

Profesor-Investigador

References

M. Piliarik and J. Homola, Surface plasmon resonance (SPR) sensors: approaching their limits?, Opt. Express 17 (2009) 16505, https://doi.org/10.1364/OE.17.016505.

J. Homola, Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chem. Rev. 108 (2008) 462, https://doi.org/10.1021/cr068107d.

Z. Chen, L. Liu, Y. He and H. Ma, Resolution enhancement of surface plasmon resonance sensors with spectral interrogation: resonant wavelength considerations, Appl. Opt. 55 (2016) 884, https://doi.org/10.1364/AO.55.000884.

U. Pant, S. Mohapatra and R. S. Moirangthem, Total internal reflection ellipsometry based SPR sensor for studying biomolecular interaction, Materials Today: Proceedings 28 (2020) 254, https://doi.org/10.1016/j.matpr.2020.01.602.

R. Singh, P. Thakur, A. Thakur, H. Kumar, P. Chawla, J. V. Rohit, R. Kaushik and N. Kumar, Colorimetric sensing approaches of surface-modified gold and silver nanoparticles for detection of residual pesticides: a review, International Journal of Environmental Analytical Chemistry 101 (2021) 3006, https://doi.org/10.1080/03067319.2020.1715382.

K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews 111 6 (2011) 3828, https://doi.org/10.1021/cr100313v.

S. M. Fothergill, C. Joyce and F. Xie, Metal enhanced fluorescence biosensing: from ultra-violet towards second nearinfrared window, Nanoscale, The Royal Society of Chemistry 10 (2018) 20914, https://doi.org/10.1039/C8NR06156D.

J.-F. Li, C.-Y. Li and R. F. Aroca, Plasmon-enhanced fluorescence spectroscopy, Chem. Soc. Rev. 46 (2017) 3962, https://doi.org/10.1039/C7CS00169J.

M. Piliarik, H. Vaisocherov and J. Homola, Surface Plasmon Resonance Biosensing, Biosensors and Biodetection 503 (2009) 65, https://doi.org/10.1007/978-1-60327-567-5 5.

A. K. Sharma, R. Jha and B. D. Gupta, Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review, IEEE Sensors Journal 7 (2007) 1118, https://doi.org/10.1109/JSEN.2007.897946.

A. Brecht and G. Gauglitz, Optical probes and transducers, Biosens Bioelectron 10 (1995) 923, https://doi.org/10.1016/0956-5663(95)99230-i.

J. Homola, S. S. Yee and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical 54 (1999) 3, https://doi.org/10.1016/S0925-4005(98)00321-9.

A. A. Alwahib, Sura H., Al-Rekabi and W. H. Muttlak, Comprehensive study of generating sharp dip using numerical analysis in prism based surface plasmon resonance, AIP Conference Proceedings 2213 (2020) https://doi.org/10.1063/5.0000103.

K. D. Izquierdo, A. Salazar, A. Losoya-Leal and S. O. Martinez-Chapa, A computer model for the prediction of sensitivity in SPR sensing platforms, Pro. SPIE Plasmonics in Biology and Medicine XII 9340 (2015) 53, https://doi.org/10.1117/12.2079684.

G. Xia, C. Zhou, S. Jin, C. Huang, J. Xing and Z. Liu, Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance, Sensors (Basel) 19 (2019) 1198, https://doi.org/10.3390/s19051198.

A. A. Kolomenskii, P. D. Gershon and H. A. Schuessler, Surface-plasmon resonance spectrometry and characterization of absorbing liquids, Appl. Opt. OSA 39 (2000) 3314, https://doi.org/10.1364/AO.39.003314.

K. M. M cPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli and D. J. Norris, Plasmonic Films Can Easily Be Better: Rules and Recipes, ACS Photonics 2 (2015) 326, https://doi.org/10.1021/ph5004237.

P. B. Johnson and R. W. Christy, Optical-constants of noblemetals, Phys. Rev. B 6 (1972) 4370, https://doi.org/10.1364/OE.19.000107.

C. Zhou, G. Xia and G. Wang, Effect of Spectral Power Distribution on the Resolution Enhancement in Surface Plasmon Resonance, Photonic Sens 8 (2018) 310, https://doi.org/10.1007/s13320-018-0507-8.

M. Born and E. Wolf, Principles of Optics, 7th ed., New York: Pergamon Press (1980) pp. 1.

A. K. Sharma and B. D. Gupta, On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers, Opt. Commun 245 (2005) 159, https://doi.org/10.1016/j.optcom.2004.10.013.

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Amsterdam: North-Holland (1977)

Downloads

Published

2022-05-01

How to Cite

[1]
H. H. Sánchez Hernández, J. M. . Peréz-Abarca, A. Santiago Alvarado, and A. S. Cruz-Felix, “Amplitude and phase measument using reflection polarization mode of a prism-based surface plasmon resonance”, Rev. Mex. Fís., vol. 68, no. 3 May-Jun, pp. 031304 1–, May 2022.