Non-exponential tunneling ionization probability distribution as a function of different laser beam profiles

Authors

  • Tatjana B. Miladinovic Institute for Information Technologies, University of Kragujevac https://orcid.org/0000-0002-6998-9350
  • Nebojsa Danilović University of Kragujevac
  • Marija Z. Jeremic University Clinical Center Kragujevac

DOI:

https://doi.org/10.31349/RevMexFis.68.040401

Keywords:

non-exponential decay, tunneling ionization probability, tunneling time, laser beam profiles

Abstract

In this paper, we discussed the probability distribution of exponential and non-exponential tunneling ionization of atoms, taking into account that the tunneling is not instantaneous, but requires a very short time interval. Also, it was investigated how different laser beam profiles affect the probability distribution. These physical situations are analyzed for the valence electron of potassium atom exposed to a strong laser field in a wide range of intensities (1012 -1015  W/cm2). We use ADK theory formalism to compute probability distributions. The results demonstrate that the probability distribution in the non-exponential mode has a significantly lower value than in the exponential mode, calculated under the same conditions. We showed that various laser beam profiles on these probability distributions produce different tunneling time intervals.

References

S.L. Chin, F. Yergeau, P. Lavigne, Tunnel ionisation of Xe in an ultra-intense CO2 laser field (1014 W cm-2) with multiple charge creation, J. Phys. B: Atom. Mol. Phys. 18 (1985) L213 https://doi.org/10.1088/0022-3700/18/8/001

N.G. Kelkar, H.M. Castañeda, M. Nowakowski, Quantum time scales in alpha tunneling, EPL 85 (2009) 20006 https://doi.org/10.1209/0295-5075/85/20006

W. Fang, R.A. Zarotiadis, J.O. Richardson, Revisiting nuclear tunneling in the aqueous ferrous-ferric electron transfer, Phys. Chem. Chem. Phys. 22 (2020) 10687 https://doi.org/10.1039/C9CP06841D

T. Nakamura, R. Yoshino, R. Hobara, S. Hasegawa, T. Hirah, Development of a convenient in situ UHV scanning tunneling potentiometry system using a tip holder equipped with current-injection wires, e-J. Surf. Sci. Nanotech. 14 (2016) 216 https://doi.org/10.1380/ejssnt.2016.216

A. Nägelein, M. Steidl, S. Korte, B. Voigtländer, W. Prost, P. Kleinschmidt, Th. Hannappel, Investigation of charge carrier depletion in freestanding nanowires by a multi-probe scanning tunneling microscope, Nano Res. 11 (2018) 5924 https://doi.org/10.1007/s12274-018-2105-x

P. Abedini Sohi, Self-Standing Silicon Nanostructures Fabricated Using Chemical/Electrochemical Technique: Application in Gas Field Ionization Tunneling Sensor, Ph.D. thesis, (Concordia University, 2019) https://spectrum.library.concordia.ca/985317/

P. Abedini Sohi, M. Kahrizi, Low-voltage gas field ionization tunneling sensor using silicon nanostructures, IEEE Sensors Journal 18 (2018) 6092 doi: 10.1109/JSEN.2018.2846254

R. B. Sadeghian, M. Kahrizi, A novel gas sensor based on tunneling-field-ionization on whisker-covered gold nanowires, IEEE Sensors Journal 8 (2008) 161 DOI: 10.1109/JSEN.2007.912788 [9] S.I. Hwang, S. B. Park, J. Mun, W. Cho, C.H. Nam, T.K. Kim, Generation of a single-cycle pulse using a two-stage compressor and its temporal characterization using a tunnelling ionization method, Sci. Rep. 9 (2019) 1613 https://doi.org/10.1038/s41598-018-38220-z

W. Cho, S.I. Hwang, C.H. Nam, M.R. Bionata, P. Lassonde, B.E. Schmidt, I.H. Légaré, K.T. Kim, Temporal characterization of femtosecond laser pulses using tunneling ionization in the UV, visible, and mid-IR ranges Sci. Rep. 9 (2019) 16067 https://doi.org/10.1038/s41598-019-52237-y

L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non Relativistic Theory (Nauka, Moscow, 1989, Pergamon, Oxford, 1991) pp. 295-296

L.V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP 20 (1965) 1307 https://inspirehep.net/files/6697e05d52e411291acc8238a780db45

T.D.G. Walsh, F.A. Ilkov, J.E. Decker, S.L. Chin, The tunnel ionization of atoms, diatomic and triatomic molecules using intense 10.6 mu m radiation, J. Phy. B: At. Mol. Opt. Phys. 27 (1994) 3767 DOI: 10.1088/0953-4075/27/16/022

D.T. Lloyd, K. O’keeffe, S.M. Hooker, Comparison of strong-field ionization models in the wavelength-scaling of high harmonic generation, Opt. Express 27(2019) 6925 https://doi.org/10.1364/OE.27.006925

A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Ionization of Atoms in an Alternating Electric Field, Sov. Phys. JETP 23 (1966) 924

V.M. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Sov. Phys. JETP 64 (1986) 1191

R. Romo, A. Hernández, and J. Villavicencio, Exponential and nonexponential buildup in resonant tunneling, Phys. Rev. A 87 (2013) 022121 https://doi.org/10.1103/PhysRevA.87.022121

A.M. Ishkhanyan, V.P. Krainov, Non-exponential tunneling ionization of atoms by an intense laser field, Laser Phys. Lett. 12 (2015) 046002 https://doi.org/10.1088/1612-2011/12/4/046002

G. Gamow, Quantum Theory of the Atomic Nucleus (Zur Quantentheorie des Atomkernes), Z. Phys. 51 (1928) 204 https://doi.org/10.1007/BF01343196

R.W. Gurney, E.W. Condon, Quantum mechanics and radioactive disintegration, Phys. Rev. 33 (1929) 127 https://doi.org/10.1103/PhysRev.33.127

L.A. Khalfin, Contribution to the decay theory of a quasi-stationary state, Sov. Phys. JETP 6 (1958) 1053 http://www.jetp.ras.ru/cgi-bin/dn/e_006_06_1053.pdf

C. Rothe, S.I. Hintschich, A.P. Monkman, Violation of the Exponential-Decay Law at Long Times, Phys. Rev. Lett. 96 (2006) 163601 https://link.aps.org/doi/10.1103/PhysRevLett.96.163601

S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Experimental evidence for non-exponential decay in quantum tunneling, Nature 387 (1997) 575

C.A. Nicolaides, D.R. Beck, On the possibility of observing nonexponential decays in autoionizing states, Phys. Rev. Lett. 38 (1977) 683 https://doi.org/10.1016/0375-9601(78)90116-0

M. Buttiker, R. Landauer, Traversal Time for Tunneling. Physical Review Letters, Phys. Rev. Lett. 49 (1982) 1739 https://link.aps.org/doi/10.1103/PhysRevLett.49.1739

H.A. Fertig, Traversal-Time Distribution and the Uncertainty Principle in Quantum Tunneling, Phys. Rev. Lett. 65 (1990) 232

https://link.aps.org/doi/10.1103/PhysRevLett.65.2321

N. Yamada, Unified derivation of tunneling times from decoherence functional, Phys. Rev. Lett. 93 (2004) 170401

https://link.aps.org/doi/10.1103/PhysRevLett.93.170401

A.S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C. Cirelli, L. Gallmann, U. Keller, Ultrafast resolution of tunneling delay time, Optica 1 (2014) 343 https://doi.org/10.1364/OPTICA.1.000343

J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering p. 999-1013 (2003) DOI: 10.1081/E-EOE 120009751

Z. Liangmin, Intensity Spatial Profile Analysis of a Gaussian Laser Beam at Its Waist Using an Optical Fiber System, Chin. Phys. Lett. 27 (2010) 054207 DOI: 10.1088/0256-307X/27/5/054207

K. Gillen-Christand, G.D. Gillen, M.J. Piotrowicz, M. Saffman, Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits, Appl. Phys. B 122 (2016) 1 https://doi.org/10.1007/s00340-016-6407-y

Y. F. Chen, T. M. Huang, C.F. Kao, C. L. Wang, S. C. Wang, Generation of Hermite–Gaussian modes in fiber-coupled laser-diode End-pumped lasers, IEEE J. Quantum Electron. 33 (1997) 1025 doi: 10.1109/3.585491.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, M. Raizen, A high frequency optical trap for atoms using Hermite-Gaussian beams, Opt. Express 13 (2005) 2843 https://doi.org/10.1364/OPEX.13.002843

L.R. Hofer, L.W. Jones, J.L. Goedert, R.V. Dragone, Hermite–Gaussian mode detection via convolution neural networks, J. Opt. Soc. Am. A 36 (2019) 936 https://doi.org/10.1364/JOSAA.36.000936

F. Pampaloni, J. Enderlein, Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer, November 2004, Source: arXiv, https://arxiv.org/abs/physics/0410021

N.K. Fontaine, R. Ryf, H. Chen, D.T. Neilson, K. Kim, J. Carpenter, Laguerre-Gaussian mode sorter, Nat. Commun. 10 (2019) 1865 https://doi.org/10.1038/s41467-019-09840-4

A. Sainte-Marie, O. Gobert, F. Quere, Controlling the velocity of ultrashort light pulses in vacuum, Optica, 4 (2017) 1298 https://doi.org/10.1364/OPTICA.4.001298

D.J. Armstrong , M.C. Phillips and A.V. Smith, Generation of radially polarized beams with an image-rotating resonator, Appl. Opt. 42 (2003), 3550 https://doi.org/10.1364/AO.42.003550

G. Machavariani, N. Davidson, Y. Lumer, I. Moshe, A. Meir, S. Jackel, New methods of mode conversion and brightness enhancement in high-power lasers, European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (Munich, 2007), p. 1-1, doi: 10.1109/CLEOE-IQEC.2007.4385831

P. Klarskov, A.C. Strikwerda, K. Iwaszczuk, P.U. Jepsen, Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma, New J. Phys. 15 (2013) 075012 https://doi.org/10.1088/1367-2630/15/7/075012

L. Fonda, G.C. Ghirardi, and A. Ramini, Decay theory of unstable quantum systems, Rep. Prog. Phys 41 (1978) 589 https://doi.org/10.1088/0034-4885/41/4/003

M.S. Hosseini, S.A. Alavi, Breit–Wigner distribution, quantum beats and GSI Anomaly, Annals of Physics 410 (2019) 167936 https://doi.org/10.1016/j.aop.2019.167936

A. Bohm, N.L. Harshman, H. Walther, Relating the Lorentzian and exponential: Fermi’s approximation, the Fourier transform, and causality, Phys. Rev. A. 66 (2002) 012107 https://link.aps.org/doi/10.1103/PhysRevA.66.012107

B. Yang, K.J. Schaefer, B. Walker, K.C. Κulander, L.F. Diamauro, P. Agostini, UP, 3UP, 11UP: Above-threshold ionization revisted, Acta Phys. Pol. Α 86 (1994) 41

A. Karamatskou, Nonlinear effects in photoionization over a broad photon-energy range within the TDCIS scheme, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 013002 http://dx.doi.org/10.1088/1361-6455/50/1/013002

C. Anastopoulos, Decays of unstable quantum systems, December 2018, Source: https://arxiv.org/pdf/1808.03798.pdf

O. Rosas-Ortiz, N. Fernandez-Garcia, Sara Cruz y Cruz, A Primer on Resonances in Quantum Mechanics, February 2004, Source: https://arxiv.org/pdf/0902.4061.pdf

J-F Bisson, Probability density function of the rate of energy transfer from luminescent ions to a random distribution of traps in the static limit, J. Opt. Soc. Am. B 32 (2015) 757 http://dx.doi.org/10.1364/JOSAB.32.000757

P. Wessels, B. Ruff, T. Kroker, A.K. Kazansky, N.M. Kabachnik, K. Sengstock, M. Drescher, J. Simonet, Absolute strong-field ionization probabilities of ultracold rubidium atoms, Commun. Phys. 1, 32 (2018) https://doi.org/10.1038/s42005-018-0032-5

H.K. Malik, A.K. Malik, Strong and collimated terahertz radiation by super-Gaussian lasers, EPL 100 (2012) 45001 https://doi.org/10.1209/0295-5075/100/45001

A.E. Siegman, Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions, J. Opt. Soc. Am. 63 (1973) 1093 https://doi.org/10.1364/JOSA.63.001093

A. Wünsche, Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry, J. Opt. Soc. Am. A 6 (1989) 1320 https://doi.org/10.1364/JOSAA.6.001320

P.X. Wang, Y.K. Ho, Ch. X. Tang, W. Wang, Field structure and electron acceleration in a laser beam of a high-order Hermite-Gaussian mode, J. Appl. Phys. 101 (2007) 083113 https://doi.org/10.1063/1.2719708

N. Shiokawa and E. Tokunaga, Quasi first-order Hermite Gaussian beam for enhanced sensitivity in Sagnac interferometer photothermal deflection spectroscopy, Opt. Express 24 (2016) 11961 https://doi.org/10.1364/OE.24.011961

I. Kimel, L.R. Elias, Relations Between Hermite and Laguerre Gaussian Modes, IEEE J. Quantum Electron. 29 (1993) 2562 DOI:10.1109/3.247715

J. Ouyang, W. Perrie, O.J. Allegre , T. Heil, Y. Jin, E. Fearon, D. Eckford, S.P. Edwardson, and G. Dearden, Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring, Opt. Express 23 (2015) 12562 https://doi.org/10.1364/OE.23.012562

M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394 (1998) 348 https://doi.org/10.1038/28566

A.T. O'Neil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam, Phys. Rev. Lett. 88 (2002) 053601 https://link.aps.org/doi/10.1103/PhysRevLett.88.053601

G. Machavariani, Y. Lumer, I. Moshe, S. Jackel, Effect of the spiral phase element on the radial-polarization (0,1)*LG beam, Opt. Commun. 271 (2007) 190 https://doi.org/10.1016/j.optcom.2006.10.013

P.K. Patel, M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H-S Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S.C. Wilks and B. Zhang, Integrated laser–target interaction experiments on the RAL petawatt laser, Plasma Phys. Control. Fusion 47 (2005) B833 https://doi.org/10.1088/0741-3335/47/12B/S65

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate, Opt. Express 16 (2008) 2109 https://doi.org/10.1364/OE.16.002109

M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Freeman, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, P. Jaanimagi, M.H. Key, K. Krushelnick, T. Ma, A. MacPhee, A.J. MacKinnon, H. Nakamura, R.B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R.L. Weber, M.S. Wei, N.C. Woolsey, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser, New J. Phys. 10 (2008) 043046 https://doi.org/10.1088/1367-2630/10/4/043046

W.J. Waters, B. King, On beam models and their paraxial approximation, Laser Phys. 28 (2018) 015003 https://doi.org/10.1088/1555-6611/aa94dc

D.L. Shealy, and J.A. Hoffnagle, Laser beam shaping profiles and propagation, Appl. Opt. 45 (2006), 5118 https://doi.org/10.1364/AO.45.005118

P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H.G. Muller, M. Büttike, U. Keller, Attosecond Ionization and Tunneling Delay Time Measurements in Helium, Science 322 (2008) 1525 https://doi.org/10.1126/science.1163439

D. Shafir, H. Soifer, D.B. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M.Y. Ivanov, O. Smirnova, N. Dudovich, Resolving the time when an electron exits a tunnelling barrier, Nature 485 (2012) 343 https://doi.org/10.1038/nature11025

D. Bauer, Theory of Laser–Matter Interaction, Max--Planck Institute (Heidelberg 2002) pp.56-61

A.F. González, Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate, Ph.D. thesis, (Dissertation an der Fakultӓt für Physik der Ludwig–Maximilians–Universitӓt München, (2007))

K-H Hong, S. Kostritsa, T.J. Yu, J.H. Sung, I.W. Choi, Y-C Noh, D-K Ko, J.Lee, 100-kHz high-power femtosecond Ti:sapphire laser based on downchirped regenerative amplification, Opt. Express 14 (2006) 970 https://doi.org/10.1364/OPEX.14.000970

A.C. Popescu, M. Ulmeanu, C. Ristoscu, I.N. Mihailescu, Deposition and surface modification of thin solid structures by high-intensity pulsed laser irradiation, Processes and applications, Woodhead Publishing Series in Electronic and Optical Materials, Laser Surface Engineering (2015) 287 https://doi.org/10.1016/B978-1-78242-074-3.00012-X

A. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L.B. Madsen, U. Keller, Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms, Nature Phys. 8 (2012) 76 https://doi.org/10.1038/nphys2125

M. Yuan, P. Xin, T. Chu, H. Liu, Exploring tunneling time by instantaneous ionization rate in strong-field ionization, Opt. Express 25 (2017) 23493 https://doi.org/10.1364/OE.25.023493

N.B. Delone, V.P. Krainov, Atomic stabilization in a laser field, Phys. Usp. 38 (1995) 1247 https://doi.org/10.1070/PU1995v038n11ABEH000119

Downloads

Published

2022-06-07

How to Cite

[1]
T. Miladinović, N. Danilović, and M. Jeremić, “Non-exponential tunneling ionization probability distribution as a function of different laser beam profiles”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040401 1–, Jun. 2022.

Issue

Section

04 Atomic and Molecular Physics