Non-exponential tunneling ionization probability distribution as a function of different laser beam profiles


  • Tatjana B. Miladinovic Institute for Information Technologies, University of Kragujevac
  • Nebojsa Danilović University of Kragujevac
  • Marija Z. Jeremic University Clinical Center Kragujevac



non-exponential decay, tunneling ionization probability, tunneling time, laser beam profiles


In this paper, we discussed the probability distribution of exponential and non-exponential tunneling ionization of atoms, taking into account that the tunneling is not instantaneous, but requires a very short time interval. Also, it was investigated how different laser beam profiles affect the probability distribution. These physical situations are analyzed for the valence electron of potassium atom exposed to a strong laser field in a wide range of intensities (1012 -1015  W/cm2). We use ADK theory formalism to compute probability distributions. The results demonstrate that the probability distribution in the non-exponential mode has a significantly lower value than in the exponential mode, calculated under the same conditions. We showed that various laser beam profiles on these probability distributions produce different tunneling time intervals.


S.L. Chin, F. Yergeau, P. Lavigne, Tunnel ionisation of Xe in an ultra-intense CO2 laser field (1014 W cm-2) with multiple charge creation, J. Phys. B: Atom. Mol. Phys. 18 (1985) L213

N.G. Kelkar, H.M. Castañeda, M. Nowakowski, Quantum time scales in alpha tunneling, EPL 85 (2009) 20006

W. Fang, R.A. Zarotiadis, J.O. Richardson, Revisiting nuclear tunneling in the aqueous ferrous-ferric electron transfer, Phys. Chem. Chem. Phys. 22 (2020) 10687

T. Nakamura, R. Yoshino, R. Hobara, S. Hasegawa, T. Hirah, Development of a convenient in situ UHV scanning tunneling potentiometry system using a tip holder equipped with current-injection wires, e-J. Surf. Sci. Nanotech. 14 (2016) 216

A. Nägelein, M. Steidl, S. Korte, B. Voigtländer, W. Prost, P. Kleinschmidt, Th. Hannappel, Investigation of charge carrier depletion in freestanding nanowires by a multi-probe scanning tunneling microscope, Nano Res. 11 (2018) 5924

P. Abedini Sohi, Self-Standing Silicon Nanostructures Fabricated Using Chemical/Electrochemical Technique: Application in Gas Field Ionization Tunneling Sensor, Ph.D. thesis, (Concordia University, 2019)

P. Abedini Sohi, M. Kahrizi, Low-voltage gas field ionization tunneling sensor using silicon nanostructures, IEEE Sensors Journal 18 (2018) 6092 doi: 10.1109/JSEN.2018.2846254

R. B. Sadeghian, M. Kahrizi, A novel gas sensor based on tunneling-field-ionization on whisker-covered gold nanowires, IEEE Sensors Journal 8 (2008) 161 DOI: 10.1109/JSEN.2007.912788 [9] S.I. Hwang, S. B. Park, J. Mun, W. Cho, C.H. Nam, T.K. Kim, Generation of a single-cycle pulse using a two-stage compressor and its temporal characterization using a tunnelling ionization method, Sci. Rep. 9 (2019) 1613

W. Cho, S.I. Hwang, C.H. Nam, M.R. Bionata, P. Lassonde, B.E. Schmidt, I.H. Légaré, K.T. Kim, Temporal characterization of femtosecond laser pulses using tunneling ionization in the UV, visible, and mid-IR ranges Sci. Rep. 9 (2019) 16067

L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non Relativistic Theory (Nauka, Moscow, 1989, Pergamon, Oxford, 1991) pp. 295-296

L.V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP 20 (1965) 1307

T.D.G. Walsh, F.A. Ilkov, J.E. Decker, S.L. Chin, The tunnel ionization of atoms, diatomic and triatomic molecules using intense 10.6 mu m radiation, J. Phy. B: At. Mol. Opt. Phys. 27 (1994) 3767 DOI: 10.1088/0953-4075/27/16/022

D.T. Lloyd, K. O’keeffe, S.M. Hooker, Comparison of strong-field ionization models in the wavelength-scaling of high harmonic generation, Opt. Express 27(2019) 6925

A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Ionization of Atoms in an Alternating Electric Field, Sov. Phys. JETP 23 (1966) 924

V.M. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Sov. Phys. JETP 64 (1986) 1191

R. Romo, A. Hernández, and J. Villavicencio, Exponential and nonexponential buildup in resonant tunneling, Phys. Rev. A 87 (2013) 022121

A.M. Ishkhanyan, V.P. Krainov, Non-exponential tunneling ionization of atoms by an intense laser field, Laser Phys. Lett. 12 (2015) 046002

G. Gamow, Quantum Theory of the Atomic Nucleus (Zur Quantentheorie des Atomkernes), Z. Phys. 51 (1928) 204

R.W. Gurney, E.W. Condon, Quantum mechanics and radioactive disintegration, Phys. Rev. 33 (1929) 127

L.A. Khalfin, Contribution to the decay theory of a quasi-stationary state, Sov. Phys. JETP 6 (1958) 1053

C. Rothe, S.I. Hintschich, A.P. Monkman, Violation of the Exponential-Decay Law at Long Times, Phys. Rev. Lett. 96 (2006) 163601

S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Experimental evidence for non-exponential decay in quantum tunneling, Nature 387 (1997) 575

C.A. Nicolaides, D.R. Beck, On the possibility of observing nonexponential decays in autoionizing states, Phys. Rev. Lett. 38 (1977) 683

M. Buttiker, R. Landauer, Traversal Time for Tunneling. Physical Review Letters, Phys. Rev. Lett. 49 (1982) 1739

H.A. Fertig, Traversal-Time Distribution and the Uncertainty Principle in Quantum Tunneling, Phys. Rev. Lett. 65 (1990) 232

N. Yamada, Unified derivation of tunneling times from decoherence functional, Phys. Rev. Lett. 93 (2004) 170401

A.S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C. Cirelli, L. Gallmann, U. Keller, Ultrafast resolution of tunneling delay time, Optica 1 (2014) 343

J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering p. 999-1013 (2003) DOI: 10.1081/E-EOE 120009751

Z. Liangmin, Intensity Spatial Profile Analysis of a Gaussian Laser Beam at Its Waist Using an Optical Fiber System, Chin. Phys. Lett. 27 (2010) 054207 DOI: 10.1088/0256-307X/27/5/054207

K. Gillen-Christand, G.D. Gillen, M.J. Piotrowicz, M. Saffman, Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits, Appl. Phys. B 122 (2016) 1

Y. F. Chen, T. M. Huang, C.F. Kao, C. L. Wang, S. C. Wang, Generation of Hermite–Gaussian modes in fiber-coupled laser-diode End-pumped lasers, IEEE J. Quantum Electron. 33 (1997) 1025 doi: 10.1109/3.585491.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, M. Raizen, A high frequency optical trap for atoms using Hermite-Gaussian beams, Opt. Express 13 (2005) 2843

L.R. Hofer, L.W. Jones, J.L. Goedert, R.V. Dragone, Hermite–Gaussian mode detection via convolution neural networks, J. Opt. Soc. Am. A 36 (2019) 936

F. Pampaloni, J. Enderlein, Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer, November 2004, Source: arXiv,

N.K. Fontaine, R. Ryf, H. Chen, D.T. Neilson, K. Kim, J. Carpenter, Laguerre-Gaussian mode sorter, Nat. Commun. 10 (2019) 1865

A. Sainte-Marie, O. Gobert, F. Quere, Controlling the velocity of ultrashort light pulses in vacuum, Optica, 4 (2017) 1298

D.J. Armstrong , M.C. Phillips and A.V. Smith, Generation of radially polarized beams with an image-rotating resonator, Appl. Opt. 42 (2003), 3550

G. Machavariani, N. Davidson, Y. Lumer, I. Moshe, A. Meir, S. Jackel, New methods of mode conversion and brightness enhancement in high-power lasers, European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (Munich, 2007), p. 1-1, doi: 10.1109/CLEOE-IQEC.2007.4385831

P. Klarskov, A.C. Strikwerda, K. Iwaszczuk, P.U. Jepsen, Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma, New J. Phys. 15 (2013) 075012

L. Fonda, G.C. Ghirardi, and A. Ramini, Decay theory of unstable quantum systems, Rep. Prog. Phys 41 (1978) 589

M.S. Hosseini, S.A. Alavi, Breit–Wigner distribution, quantum beats and GSI Anomaly, Annals of Physics 410 (2019) 167936

A. Bohm, N.L. Harshman, H. Walther, Relating the Lorentzian and exponential: Fermi’s approximation, the Fourier transform, and causality, Phys. Rev. A. 66 (2002) 012107

B. Yang, K.J. Schaefer, B. Walker, K.C. Κulander, L.F. Diamauro, P. Agostini, UP, 3UP, 11UP: Above-threshold ionization revisted, Acta Phys. Pol. Α 86 (1994) 41

A. Karamatskou, Nonlinear effects in photoionization over a broad photon-energy range within the TDCIS scheme, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 013002

C. Anastopoulos, Decays of unstable quantum systems, December 2018, Source:

O. Rosas-Ortiz, N. Fernandez-Garcia, Sara Cruz y Cruz, A Primer on Resonances in Quantum Mechanics, February 2004, Source:

J-F Bisson, Probability density function of the rate of energy transfer from luminescent ions to a random distribution of traps in the static limit, J. Opt. Soc. Am. B 32 (2015) 757

P. Wessels, B. Ruff, T. Kroker, A.K. Kazansky, N.M. Kabachnik, K. Sengstock, M. Drescher, J. Simonet, Absolute strong-field ionization probabilities of ultracold rubidium atoms, Commun. Phys. 1, 32 (2018)

H.K. Malik, A.K. Malik, Strong and collimated terahertz radiation by super-Gaussian lasers, EPL 100 (2012) 45001

A.E. Siegman, Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions, J. Opt. Soc. Am. 63 (1973) 1093

A. Wünsche, Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry, J. Opt. Soc. Am. A 6 (1989) 1320

P.X. Wang, Y.K. Ho, Ch. X. Tang, W. Wang, Field structure and electron acceleration in a laser beam of a high-order Hermite-Gaussian mode, J. Appl. Phys. 101 (2007) 083113

N. Shiokawa and E. Tokunaga, Quasi first-order Hermite Gaussian beam for enhanced sensitivity in Sagnac interferometer photothermal deflection spectroscopy, Opt. Express 24 (2016) 11961

I. Kimel, L.R. Elias, Relations Between Hermite and Laguerre Gaussian Modes, IEEE J. Quantum Electron. 29 (1993) 2562 DOI:10.1109/3.247715

J. Ouyang, W. Perrie, O.J. Allegre , T. Heil, Y. Jin, E. Fearon, D. Eckford, S.P. Edwardson, and G. Dearden, Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring, Opt. Express 23 (2015) 12562

M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394 (1998) 348

A.T. O'Neil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam, Phys. Rev. Lett. 88 (2002) 053601

G. Machavariani, Y. Lumer, I. Moshe, S. Jackel, Effect of the spiral phase element on the radial-polarization (0,1)*LG beam, Opt. Commun. 271 (2007) 190

P.K. Patel, M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H-S Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S.C. Wilks and B. Zhang, Integrated laser–target interaction experiments on the RAL petawatt laser, Plasma Phys. Control. Fusion 47 (2005) B833

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate, Opt. Express 16 (2008) 2109

M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Freeman, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, P. Jaanimagi, M.H. Key, K. Krushelnick, T. Ma, A. MacPhee, A.J. MacKinnon, H. Nakamura, R.B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R.L. Weber, M.S. Wei, N.C. Woolsey, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser, New J. Phys. 10 (2008) 043046

W.J. Waters, B. King, On beam models and their paraxial approximation, Laser Phys. 28 (2018) 015003

D.L. Shealy, and J.A. Hoffnagle, Laser beam shaping profiles and propagation, Appl. Opt. 45 (2006), 5118

P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H.G. Muller, M. Büttike, U. Keller, Attosecond Ionization and Tunneling Delay Time Measurements in Helium, Science 322 (2008) 1525

D. Shafir, H. Soifer, D.B. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M.Y. Ivanov, O. Smirnova, N. Dudovich, Resolving the time when an electron exits a tunnelling barrier, Nature 485 (2012) 343

D. Bauer, Theory of Laser–Matter Interaction, Max--Planck Institute (Heidelberg 2002) pp.56-61

A.F. González, Chirped Pulse Oscillators: Generating microjoule femtosecond pulses at megahertz repetition rate, Ph.D. thesis, (Dissertation an der Fakultӓt für Physik der Ludwig–Maximilians–Universitӓt München, (2007))

K-H Hong, S. Kostritsa, T.J. Yu, J.H. Sung, I.W. Choi, Y-C Noh, D-K Ko, J.Lee, 100-kHz high-power femtosecond Ti:sapphire laser based on downchirped regenerative amplification, Opt. Express 14 (2006) 970

A.C. Popescu, M. Ulmeanu, C. Ristoscu, I.N. Mihailescu, Deposition and surface modification of thin solid structures by high-intensity pulsed laser irradiation, Processes and applications, Woodhead Publishing Series in Electronic and Optical Materials, Laser Surface Engineering (2015) 287

A. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L.B. Madsen, U. Keller, Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms, Nature Phys. 8 (2012) 76

M. Yuan, P. Xin, T. Chu, H. Liu, Exploring tunneling time by instantaneous ionization rate in strong-field ionization, Opt. Express 25 (2017) 23493

N.B. Delone, V.P. Krainov, Atomic stabilization in a laser field, Phys. Usp. 38 (1995) 1247




How to Cite

T. Miladinović, N. Danilović, and M. Jeremić, “Non-exponential tunneling ionization probability distribution as a function of different laser beam profiles”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040401 1–, Jun. 2022.



04 Atomic and Molecular Physics