In-situ study of InAs quantum dots encapsulated in asymmetric (Al)GaAs confinement barriers

Authors

  • C. A. Mercado-Ornelas Universidad Autónoma de San Luis Potosí
  • L. I. Espinosa-Vega Universidad Autónoma de San Luis Potosí
  • I. E. Cortes-Mestizo Universidad Autónoma de San Luis Potosí
  • C. M. Yee-Rendón Universidad Autónoma de Sinaloa
  • E. Eugenio-López Universidad Autónoma de San Luis Potosí
  • J. P. Olvera-Enriquez Universidad Autónoma de San Luis Potosí
  • F. E. Perea-Parrales Universidad Autónoma de San Luis Potosí
  • A. Belio-Manzano Universidad Autónoma de San Luis Potosí
  • Victor Hugo Méndez García Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.31349/RevMexFis.68.031002

Keywords:

InAs-quantum dots, asymmetric quantum wells, intermixing, interfaces

Abstract

In this work the self-assembling of InAs quantum dots (QDs) within asymmetric barriers of (Al)GaAs is studied via reflection high energy electron diffraction (RHEED). A comparative study between the AlGaAs/InAs/GaAs interfaces and its mirror-like heterostructure GaAs/InAs/AlGaAs showed significant differences in the self-assembling and capping of the QDs. The critical thickness of InAs QDs results was proven to be larger when it is grown on AlGaAs alloys, compared with the deposition on GaAs layers. This change is explained by the reduced mobility of In atoms on the Al-containing surfaces, for which the QDs density is increased due to the strain relieve. Through the in-situ analysis of diffusion parameters, it is concluded that the mobility of In atoms decreases the mass transport of 2D and 3D precursors that conduces to the self-assembling of the QDs nanoislands, modifying the rate at which the QDs are formed. Further, during the first stages of QDs capping it is observed that the III-V materials intermixing plays a predominant role. The nanoislands are less affected when are covered by AlGaAs in comparison with the GaAs capping, preserving the QDs morphology and avoiding materials alloying. By following the RHEED intensity behavior during the QDs capping, a model was proposed to obtain quantitative parameters for the smoothing process. High resolution x ray diffraction (HRXRD) measurements show the composition of sharp interfaces for the AlGaAs/InAs/GaAs heterostructure. Lastly, numerical simulations were performed to evaluate the strain changes using the experimental information as input data.

References

H. Unlu and N.J.M. Horing (eds.). Low Dimensional Semiconductor Structures. NanoScience and Technology, Chapter 1, (Springer, 2013). https://doi.org/10.1007/978-3-642-28424-3

L. Peng, L. Hu, and X. Fang. Low-Dimensional Nanostructure Ultraviolet Photodetectors. Adv. Mater. 25, 5321–5328, (2013). https://doi.org/10.1002/adma.201301802

A. D. Yoffe. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Advances in Physics, 50:1, 1-208, (2001). https://doi.org/10.1080/00018730010006608

K. Barnham and D. Vvendensky (eds.). Low-dimensional semiconductor structures: fundamentals and device applications. (Cambridge University Press, 2001). https://doi.org/10.1017/CBO9780511624247

J. Wu, S. Chen, A. Seeds and H. Liu. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J. Phys. D: Appl. Phys. 48, 363001, (2015),

http://dx.doi.org/10.1088/0022-3727/48/36/363001

I. A. Karpovich, et. al. Tuning the energy spectrum of InAs/GaAs quantum dots by varying the thickness and composition of the thin double GaAs/InGaAs cladding layer. Semiconductors, 38, 4, 431–436, (2004). https://doi.org/10.1134/1.1734670

M.V. Rakhlin, K.G. Belyaev, G.V. Klimko, et al. InAs/AlGaAs quantum dots for single-photon emission in a red spectral range. Sci. Rep. 8, 5299, (2018). https://doi.org/10.1038/s41598-018-23687-7

P. Werner, K. Scheerschmidt, N. D. Zakharov, R. Hillebrand, M. Grundmann and R. Schneider. Quantum Dot Structures in the InGaAs System Investigated by TEM Techniques. Cryst. Res. Technol., 35, 75 9–768, (2000)

https://doi.org/10.1002/1521-4079(200007)35:6/7<759::AID-CRAT759>3.0.CO;2-W

G. Yusa and H. Sakaki. Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures. Appl. Phys. Lett. 70, 345, (1997). https://doi.org/10.1063/1.119068

A. Sayari, M. Ezzidini, B. Azeza, S. Rekaya, E. Shalaan, S.J. Yaghmour, A.A. Al-Ghamdi, L. Sfaxi, R. M’ghaieth, H. Maaref. Improvement of performance of GaAs solar cells by inserting self-organized InAs/InGaAs quantum dot superlattices. Solar Energy Materials and Solar Cells, 113, 1-6, 0927-0248, (2013). https://doi.org/10.1016/j.solmat.2013.01.033

S. Birner, S. Hackenbuchner, M. Sabathil, G. Zandler, et. al. Modeling of Semiconductor Nanostructures with nextnano. Acta Physica Polonica. A. 110, 2 (2006). http://doi.org/10.12693/APhysPolA.110.111

E. Eugenio-López, M. Lopez-Lopez, A.Yu.Gorbatchev, L.I.Espinosa-Vega, I.E.Cortes-Mestizo, C.A. Mercado-Ornelas, A. Del Rı́o-De Santiago V. H.Méndez-Garcí. InAs quantum dots nucleation on (100) and anisotropic (631)-oriented GaAs substrate. Physica E, 95, 22–26, (2018). http://dx.doi.org/10.1016/j.physe.2017.08.013

P. Ballet, J. B. Smathers, H. Yang, C. L. Workman, and G. J. Salamo. Control of size and density of InAs/(Al, Ga)As self-organized islands. Journal of Applied Physics 90, 481 (2001). https://doi.org/10.1063/1.1357784

T. J. Krzyzewski, P. B. Joyce, G. R. Bell, T. S. Jones. Understanding the growth mode transition in InAs/GaAs(0 0 1) quantum dot formation. Surface Science, 532–535, (2003). https://doi.org/10.1016/S0039-6028(03)00455-2

H. T. Dobbs, D.D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, W. Seifert. Mean-Field Theory of Quantum Dot Formation. Phys. Rev. Lett. 79, 897-900, (1997). https://doi.org/10.1103/PhysRevLett.79.897

C. Priester. Modified two-dimensional to three-dimensional growth transition process in multistacked self-organized quantum dots. Phys. Rev. B. 63, 153303, 1-4, (2001). https://doi.org/10.1103/PhysRevB.63.153303

C. A. Mercado-Ornelas, L. I. Espinosa-Vega, I. E. Cortes-Mestizo, F. E. Perea-Parrales, A. Belio-Manzano, and V. H. Méndez-Garcia. Nucleation and diffusion processes during the stacking of bilayer quantum dot InAs/GaAs heterostructures. Journal of Crystal Growth, 555, 0022-0248, (2021). https://doi.org/10.1016/j.jcrysgro.2020.125959

H. Z. Song, T. Usuki, Y. Nakata, N. Yokoyama, H. Sasakura, and S. Muto. Formation of InAs∕GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical studyPhysical Review B, 73, 115327, (2006). http://dx.doi.org/10.1103/PhysRevB.73.115327

C.A. Mercado-Ornelas, I.E. Cortes-Mestizo, E. Eugenio-López, L.I. Espinosa-Vega, D. García-Compean, I. Lara-Velázquez, A. Yu. Gorbatchev, L. Zamora-Peredo, C.M. Yee-Rendon, V.H. Méndez-Garcia. Physica E: Low-dimensional Systems and Nanostructures, 124, 114217, 1386-9477. (2020). https://doi.org/10.1016/j.physe.2020.114217

D. Panda, J. Saha, A. Balgarkashi, S. Shetty, H. Rawool, S. M. Singh, S. Upadhyay, B. Tongbram, S. Chakrabarti. Optimization of dot layer periodicity through analysis of strain and electronic profile in vertically stacked InAs/GaAs Quantum dot heterostructure. Journal of Alloys and Compounds, 736, 216-224, 0925-8388. (2018) https://doi.org/10.1016/j.jallcom.2017.11.086

Y. Xiong, and X. Zhang. InAs/InP quantum dots stacking: Impact of spacer layer on optical properties J. Appl. Phys. 125, 093103 (2019); https://doi.org/10.1063/1.5082722

P. B. Joyce, T. J. Krzyzewski, P. H. Steans, G. R. Bell, J. H. Neave, T. S. Jones. Shape and surface morphology changes during the initial stages of encapsulation of InAs/GaAs quantum dots. Surface Science, 492, 345±353, (2001). https://doi.org/10.1016/S0039-6028(01)01479-0

A. Hospodková, J. Vyskočil, J. Pangrác, J. Oswald, E. Hulicius, K. Kuldová. Surface Science, 604, 3–4, (2010). https://doi.org/10.1016/j.susc.2009.11.023

H. Z. Song, Y. Tanaka, T. Yamamoto, N. Yokoyama, M. Sugawara, Y. Arakawa, Surface processes during growth of InAs/GaAs quantum dot structures monitored by reflectance anisotropy spectroscopy. Physics Letters A, 375, 3517–3520, (2011). https://doi.org/10.1016/j.physleta.2011.08.021

E. C. Weiner, R. Jakomin, D. N. Micha, H. Xie, P.-Y. Su, L. D. Pinto, M. P. Pires, F. A. Ponce, P. L. Souza. Effect of capping procedure on quantum dot morphology: Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells. Solar Energy Materials and Solar Cells, 178, 240–248, (2018). https://doi.org/10.1016/j.solmat.2018.01.028

B. Tongbram, J. Saha, S. Sengupta and S. Chakrabarti. Metamorphosis of self-assembled InAs quantum dot through variation of growth rates. Journal of Alloys and Compounds, 824, 153870, (2020). https://doi.org/10.1016/j.jallcom.2020.153870

A. Taurino, M. Catalano, M. J. Kim, V. Tasco, I. Tarantini, A. Passaseo, A. Cretì, and M. Lomascolo. InAs/AlGaAs quantum dots grown by a novel molecular beam epitaxy multistep design for intermediate band solar cells: physical insight into the structure, composition, strain and optical properties. Cryst. Eng. Comm., 21, 4644-4652, (2019). https://doi.org/10.1039/C9CE00792J

P. Howe, E. C. Le Ru, R. Murray, T. S. Jones. Indium segregation during multilayer InAs/GaAs(0 0 1) quantum dot formation. Journal of Crystal Growth, 278, (2005). 57–60. http://dx.doi.org/10.1016/j.jcrysgro.2004.12.053

K. B. Hong and M. Kuo, Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition (IMECE2009). Effects of segregation on the strain fields and electronic structures of InAs quantum dots. (2009). https://doi.org/10.1115/IMECE2009-11917

S. Adhikary, N. Halder, S. Chakrabarti, S. Majumdar, S. K. Ray, M. Herrera, M. Bonds, N. D. Browning. Investigation of strain in self-assembled multilayer InAs/GaAs quantum dot heterostructures. Journal of Crystal Growth, 312, 724–729, (2010). https://doi.org/10.1016/j.jcrysgro.2009.11.067

Y. I. Mazur, Zh. M. Wang, and G. J. Salamo. Investigation of indium distribution in InGaAs∕GaAs quantum dot stacks using high-resolution x-ray diffraction and Raman scattering. Journal of Applied Physics 99, 023517, (2006). http://dx.doi.org/10.1063/1.2163009

G. Polupan, T. Torchynska, L. G. Vega Macotela, R. Cisneros Tamayo And A. Escobosa Echavarría. Emission and HR-XRD varying in GaAs/AlGaInAs heterostructures with InAs quantum dots at annealing. J. Mater. Sci: Mater Electron, 31, 2643–2649, (2020). https://doi.org/10.1007/s10854-019-02803-x

T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano and S. Niki. Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells. Energy Environ. Sci., 5, 6233-6237, (2012). https://doi.org/10.1039/C2EE01930B

M. Souaf, M. Baira, O. Nasr, M.H.H. Alouane, H. Maaref, L. Sfaxi, B. Ilahi. Investigation of the InAs/GaAs Quantum Dots’ Size: Dependence on the Strain Reducing Layer’s Position. Materials, 8, 4699-4709, (2015). https://doi.org/10.3390/ma8084699

L. Seravalli, M. Minelli, P. Frigeri, and S. Franchi. Quantum dot strain engineering of InAs∕InGaAs nanostructures. Journal of Applied Physics, 101, 024313 (2007). https://doi.org/10.1063/1.2424523

R. Songmuang, S. Kiravittaya and O. G. Schmidt. Shape evolution of InAs quantum dots during overgrowth. Journal of Crystal Growth, 249, (3-4):416-421. (2003). https://doi.org/10.1016/S0022-0248(02)02222-4

M. Schramboeck, A. M. Andrews, P. Klang, W. Schrenk, G. Hesser, F. Schäffler, G. Strasser. InAs/AlGaAs QDs for intersubband devices. Superlattices and Microstructures, 44, 4–5, 0749-6036, (2008).

https://doi.org/10.1016/j.spmi.2007.10.010

Y. Li. Vertical coupling effects and transition energies in multilayer InAs/GaAs quantum dots. Surface Science, 566–568, 0039-6028, (2004). https://doi.org/10.1016/j.susc.2004.06.052

C. Shu and Y. Liu. The Calculation for Strain Distributions and Electronic Structure of InAs/GaAs Quantum Dots Based on the Eight-Band k·p Theory Acta Physica Polonica. A. 129. 3, s. 371-377, (2016). http://doi.org/10.12693/APhysPolA.129.371

Downloads

Published

2022-05-01

How to Cite

Mercado-Ornelas, C. A., L. I. Espinosa-Vega, I. E. Cortes-Mestizo, C. M. Yee-Rendón, E. Eugenio-López, J. P. Olvera-Enriquez, F. E. Perea-Parrales, A. Belio-Manzano, and Victor Hugo Méndez García. 2022. “In-Situ Study of InAs Quantum Dots Encapsulated in Asymmetric (Al)GaAs Confinement Barriers”. Revista Mexicana De Física 68 (3 May-Jun):031002 1-0. https://doi.org/10.31349/RevMexFis.68.031002.