Optimization of inhibition efficiencies process of polyvinylpyrrolidone using response surface methodology

Authors

  • A. Benchadli University Abou Beker Belkaid Tlemcen
  • T. Mellal University Abou Beker Belkaid Tlemcen
  • T. Attar University Abou Beker Belkaid Tlemcen
  • Boumédiène Dali Youcef Laboratoire de Recherche sur les Macromolécules, Université Abou Bekr Belkaïd, 13000 Tlemcen http://orcid.org/0000-0002-2618-080X
  • E. Choukchou-Braham University Abou Beker Belkaid Tlemcen

DOI:

https://doi.org/10.31349/RevMexFis.68.041003

Keywords:

Inhibition efficiencies, Polyvinylpyrrolidone, acid perchloric, central composite face-centered design (CCFCD), response surface methodology

Abstract

Inhibition efficiencies (IE) process in polyvinylpyrrolidone (PVP) which is influenced by independent factors, concentration and size of PVP, temperature, time of immersion, and perchloric acid concentration was investigated in this paper. The relationship between factors and their responses is established by the concept of response surface methodology (RSM) explicitly through regression statistical analysis and probabilistic analysis is used in this work. The concept is a combination of mathematical and statistical techniques allowing the modeling and problems analysis by experimental design. In this study, the results based on statistical analysis showed that the quadratic models for the inhibition efficiencies (IE) were significant at the value of probability P < 0.0001 and the coefficient of multiple regressions R2=0.9997, for further validation of the model, R2Adj=0.9993 indicated a good model. The observed experimental values were in good agreement with predicted ones and the model was
highly significant with Q2= 0.9884. The optimal conditions of inhibition efficiencies (IE) obtained are 104.301% for a concentration of 3.55×10−3 mol/L, temperature of 20.15°C, immersion time of 2h, size of PVP 58000 g/mol, and acid concentration of 0.5 mol/L.

Author Biography

Boumédiène Dali Youcef, Laboratoire de Recherche sur les Macromolécules, Université Abou Bekr Belkaïd, 13000 Tlemcen

Département de physiuqe

Pr

References

F. Haff, A. Sanner, F. Straub, Polym. J. 17 (1985) 143-152. https://doi.org/10.1295/polymj.17.143.

M. Teodorescu, M. Bercea, S. Morariu, Biotechnol. Adv. 37 (2019) 109-131. https://doi.org/10.1016/j.biotechadv.2018.11.008.

P. Franco, I. De Marco, Polymers, 12 (2020) 1114. https://doi.org/10.3390/polym12051114.

I.V. Stalund, G.N. Riise, F. Leh, T.K. Bjanes, L. Riise, E. Svarstad, S. Leh, F1000Res. 2021 Apr 19;10:300. doi: 10.12688/f1000research.51927.2. Online ahead of print. PMID: 34316359.

M. Kurakula, G.S.N. Koteswara Rao, J. Drug Deliv. Sci. Techol., 60 (2020) 102046. https://doi.org/10.1016/j.jddst.2020.102046.

D. Krishnaiah, A. Bono, R. Sarbatly, R. Nithyanandam, S.M. Anisuzzaman, J. King Saud Univ. Eng. Sci., 27 (2015) 26-36. https://doi.org/10.1016/j.jksues.2012.10004.

E. Betiku, S.S. Okunsolawo, S.O. Ajala, O.S. Odedele, Renewable Energy, 76 (2015) 408-417. https://doi.org/10.1016/j.renene.2014.11.049.

T. Muppaneni, H.K. Reddy, S. Ponnusamy, P.D. Patil, Y. Sun, P. Dailey, S. Deng, Fuel, 107 (2013) 633-640. https://doi.org/10.1016/j.fuel.2012.11.046.

A. Rai, B. Mohanty, R. Bhargava, Food Chem., 192 (2016) 647-659. https://doi.org/10.1016/ j.foodchem.2015.07.070.

R. Mohammadi, M.A. Mohammadifar, A.M. Mortazavian, M. Rouhi, J.B. Ghasemi, Z. Delshadian, Food Chem, 190 (2016) 186-193. https://doi.org/10.1016/j.foodchem.2015.05. 073.

M.J. Ahmed, S.K. Theydan, J. Anal. Appl. Pyrol., 105 (2014) 199-208. https://doi.org/10. 1016/j.jaap.2013.11.005.

E. Mastan, X. Li, S. Zhu, Prog. Polym. Sci., 45 (2015) 71-101. https://doi.org/10.1016/ j.progpolymsci.2014.12.003.

R. Kumar, P Pal, Chem. Eng. J., 210 (2012) 33-44. https://doi.org/10.1016/j.cej.2012.08. 036.

A. Bono, S.M. Anisuzzaman, O.W. Ding, J. King Saud Univ. Eng. Sci., 26 (2014) 3-9. https://doi.org/10.1016/j.ksues.2012.06.001.

Douglas C. Montgomery, Design and Analysis of Experiments, 10th Edition - Amazon: John Wiley and Sons, Inc., 2019.

K.A. Alyamac, E. Ghafari, R. Ince Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method, J. Clean. Prod., 144 (2017) 192-202. https://doi.org/10.1016/j.jclepro.2016.12.156.

B. Simsek, T. Uygunoglu, H. Korucu, M.M Kocakerim, J. Clean. Prod., 170 (2018) 437-445. https://doi.org/10.1016/j.jclepro.2017.09.176.

S.M. Bashar, C. Veerendrakumar, C. Khed,F.N. Muhd, J. Clean. Prod., 171 (2018) 1605-1621. https://doi.org/10.1016/j.jclepro.2017.10.102.

M. Tyagi, A. Rana, S. Kumari, S. Jagadevan, J. Clean. Prod., 178 (2018) 398-407. https://doi.org/10.1016/j.jclepro.2018.01.016.

N. Bradley, The response surface methodology (M.A.) Thesis - Indiana University South Bend; 2007.

B. Koç, F. Kaymak-Ertekin, GIDA – J. Food, 35 (2010) 63-70.

A.Y. Aydar, N. Bağdatlıoğlu, O. Köseoğlu. Grasas y Aceites, 68 (2017). https://doi.org/10.3989/gya.1057162.

T. Attar, L. Larabi, Y. Harek, Inter. J. Adv. Chem., 2 (2014) 139-142. https://doi.org/10.14419/ijac.v2i2.3272

A. Benchadli, T. Attar, E. Choukchou-Braham, Phys. Chem. Res., 7 (2019) 837-848. https://doi.org/10.22036/PCR.2019.198787.1665.

Attar T., Benchadli A., Messaoudi B. et al, Bull. Chem. React. Eng. Catal., 15 (2020) 454-464. https://doi.org/10.9767/bcrec.15.2.7753.454-464.

D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential

Data and Sources of Collinearity. New York: Wiley, 1980.

A. Ghasemzadeh, H.ZE. Jaafar, E. Karimi, A. Rahmat, BMC Complementary and Alternative Medicine. 14 (2014) 318. https://doi.org/10.1186/1472-6882-14-318.

Modde 9.1 User’s guide; Umetrics: Umea, Sweden, 2011.

N. Kettaneh-Wold, Chemometrics and Intelligent laboratory Systems, 14, (1992) 57-69. https://doi.org/10.1016/0169-7439(92)80092-I.

H. Wold. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach. Perspectives in Probability and Statistics, Gani, J. (Ed), (Papers in Honour of M. S. Bartlett). Academic Press, London, (1975) 117-142.

S. Weisberg, Applied Linear Regression, 2nd Ed., J. Wiley & Sons, Inc., New York 1985.

B. Chauhan, R. Gupta, Proc. Biochem., 39 (2004) 2115-2122. https://doi.org/10.1016/j. procbio.2003.11.002.

A. Koocheki, A.R. Taherian, S. M.A. Razavi, A.Bostan, Food Hydrocolloids, 23 (8) (2009) 2369–2379. https://doi.org/10.1016/j.foodhyd.2009.06.014.

A. Rai, B. Mohanty, R. Bhargava, Food Chem., 192 (2016) 647–659. https://doi.org/10. 1016/j.foodchem.2015.07.070.

T. Attar, A. Benchadli, T. Mellal, B. Dali Youcef, E. Choukchou-Braham, M. J. Chem., 23 (1) (2021) 60-69. http://103.6.196.91/~ikmorg/ojs/index.php/MJChem/article/view/878

E. R. Rene, M. S. Jo, H. S. Park, S. H. Kim, Int. J. Environ. Sci. Tech., 4 (2) (2007) 177-182. https://doi.org/10.1007/BF03326271.

A. Benchadli, T. Attar, B. Messaoudi, E. Choukchou-Braham, Hung. J. Ind. Chem., 49 (1) (2021) 59–69. https://doi.org/10.33927/hjic-2021-08

A. E. Hadi, Characterization and optimization of mechanical, physical and thermal properties of short Abaca (Musa Textile Nee) fiber reinforced high impact polystyrene composites [PhD thesis], Universiti Putra Malaysia, 2011.

Downloads

Published

2022-06-23

How to Cite

[1]
A. Benchadli, T. Mellal, T. Attar, B. Dali Youcef, and E. Choukchou-Braham, “Optimization of inhibition efficiencies process of polyvinylpyrrolidone using response surface methodology”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041003 1–11, Jun. 2022.