Al-Si-Cu alloy enhanced to high-temperature application by nickel addition

Authors

  • Javier Camarillo-Cisneros Facultad de Medicina y Ciencias Biomedicas, Universidad Autónoma de Chihuahua
  • R. Pérez-Bustamante Corporacion Mexicana de Investigación en Materiales S.A. de C.V
  • R. Martínez-Sánchez Centro de Investigacion en Materiales Avanzados S. C.

DOI:

https://doi.org/10.31349/RevMexFis.68.031004

Keywords:

Al-Si-Cu systems, nickel effect

Abstract

The present research evaluates commercial aluminum alloys 319 (AA319) and modified series by Ni additions on microstructure and mechanical properties through x-ray diffraction, electron microscopy, hardness, and tensile tests. All AA319+X%Ni compositions (x = 0.5,1, 2) improved both hardness and UTS at room temperature, T6, over-aging, and high-temperature conditions. UTS obtained an improvement of around 30% to AA319 + 1%N i and AA319+2%Ni relatives to unmodified reference from T6 and high-temperature conditions. In addition, Ni increased remarkably the number of θ 0-Al2Cu pairs and reduced their thickness within the aluminum matrix compared to commercial alloy. The synthesis methodology is also adaptable to the current aluminum casting industry, creating the material in ingots and finished products.

References

V. Chak, H. Chattopadhyay, and T. L. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites, Journal of Manufacturing Processes 56 (2020) 1059, https://doi.org/10.1016/j.jmapro.2020.05.042.

T. P. Hovorun, K. V. Berladir, V. I. Pererva, S. G. Rudenko, A. I. Martynov, Modern materials for automotive industry, Journal of Engineering Sciences 4 (2017) 8, https://doi.org/10.21272/jes.2017.4(2).f8.

A. Contreras, E. Bedolla, Fabricacion y caracterización de materiales compuestos de matriz metalica Al-Cu y Al-Mg reforzados con part´ıculas de tic, Rev. Mex. Fis 50 (2004) 495.

T. Kobayashi, Strength and fracture of aluminum alloys, Materials Science and Engineering: A 280 (2000) 8, https:doi.org/10.1016/S0921-5093(99)00649-8

M. Becerril, O. Vigil-Galan, G. Contreras-Puente, and O. Zelaya-Angel, Aluminum doping of cdte polycrystalline films starting from the heterostructure cdte/al, Rev. Mex. Fis 57 (2011) 304.

H. Ramezanalizadeh, and S. R. Iyzi, Fabrication and hardness investigation of Al-15%mg2Si-3%Cu in-situ cast composite, Advances in Materials and Processing Technologies 0 (2021) 1, https://doi.org/10.1080/2374068X.2021.1909331.

X. Deng, Precipitation strengthening of stress-aged al-cu-mgag alloy single crystals, Materials Science and Engineering: A 819 (2021) 141458. https://doi.org/10.1016/j.msea.2021.141458.

S. Amirkhanlou and S. Ji, Casting lightweight stiff aluminum alloys: a review, Critical Reviews in Solid State and Materials Sciences 45 (2020) 171, https://doi.org/10.1080/10408436.2018.1549975.

M. F. Ibrahim, A. M. Samuel, H.W. Doty, and F. H. Samuel, Effect of aging conditions on precipitation hardening in alsi-mg and al-si-cu-mg alloys, International Journal of Metalcasting 11 (2017) 274, https://doi.org/10.1007/s40962-016-0057-z.

A. Girgis, M. H. Abdelaziz, A. M. Samuel, S. Valtierra, and F. H. Samuel, On the enhancement of the microstructure and tensile properties of an alacu based cast alloy, ˆ Metallography, Microstructure, and Analysis 8 (2019) 757, https://doi.org/10.1007/s13632-019-00583-8.

M. A. Hussein, S. H. Al-Shafaie, and N. S. Radhi, Preparation and investigation physical properties of functionally graded materials of aluminum-nickel alloys, Journal of Physics: Conference Series 1999 (2021) 012067. https://doi.org/10.1088/1742-6596/1999/1/012067.

S. Madhankumar, K. Sivakumar, J. Chandradass, R. SrinivasaAddanki, V. Alphonse-Rodriguez, and U. Saroshkumar, Materials Today: Proceedings. International Conference on Mechanical, Electronics and Computer Engineering 2020: Materials Science 45 (2021) 6852, https://doi.org/10.1016/j.matpr.2020.12.1030.

T. Klein, C. Pauly, F. Mucklich, and G. Kickelbick, Al and ni nanoparticles as precursors for ni aluminides, Intermetallics 124 (2020) 106839. https://doi.org/10.1016/j.intermet.2020.106839.

A. Kumar, V. Kukshal, and V. R. Kiragi, Assessment of mechanical and sliding wear performance of ni particulate filled 7075 aluminium alloy composite, Materials Today: Proceedings 44 (2021) 4349, https://doi.org/10.1016/j.matpr.2020.10.556.

L. Alyaldin, M. H. Abdelaziz, A. M. Samuel, H. W. Doty, and F. H. Samuel, Effect of transition metals addition on tensile properties of alasi ˆ acu-based alloys at 25 c and 250 c: Role of heat treatment, Inter Metalcast 15 (2021) 60, https://doi.org/10.1007/s40962-020-00427-0.

M. S. Kaiser, S. H. Sabbir, M. S. Kabir, M. R. Soummo, and M. A. Nur, Study of mechanical and wear behaviour of hypereutectic al-si automotive alloy through fe, ni and cr addition, Materials Research 21 (2018) 0. https://doi.org/10.1590/1980-5373-MR-2017-1096.

Z. Yang et al., Diffusion bonding of ni3al-based alloy using a ni interlayer, Journal of Alloys and Compounds 819 (2020) 153324. https://doi.org/10.1016/j.jallcom.2019.153324.

S. Nallusamy, A review on the effects of casting quality, microstructure and mechanical properties of cast al-si-0.3mg alloy, International Journal of Performability Engineering 12 (2016) 143, https://doi.org/10.23940/ijpe.16.2.p143.mag

Downloads

Published

2022-05-01

How to Cite

Camarillo-Cisneros, Javier, R. Pérez-Bustamante, and R. Martínez-Sánchez. 2022. “Al-Si-Cu Alloy Enhanced to High-Temperature Application by Nickel Addition”. Revista Mexicana De Física 68 (3 May-Jun):031004 1-0. https://doi.org/10.31349/RevMexFis.68.031004.