The q-deformed heat equation and q-deformed diffusion equation with q-translation symmetry
DOI:
https://doi.org/10.31349/RevMexFis.68.060602Keywords:
q-deformed, q-translationAbstract
In this paper we consider the discrete heat equation with a certain non-uniform space interval which is related to q-addition appearing in the non-extensive entropy theory. By taking the continuous limit, we obtain the q-deformed heat equation. Similarly, we obtain the solution of the q-deformed diffusion equation
References
J. Fourier, Theorie Analytique de la Chaleur Firmin Didot (1822). (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00180-9)
J. Cadzow, Int. J. Control 11 (1970) 393.
J. Logan, Aequat. Math. 9 (1973) 210.
T. Durt, B.Englert, I.Bengtsson, and K. Zyczkowski, International Journal of quantum information 8 (2010) 535.
W. Wootters and B. Fields, Annals of Physics 191 (1989) 363.
C. Miquel, J.Paz, and M.Saraceno, Phys. Rev. A 65 (2002) 062309.
J. Paz, Phys. Rev. A 65 (2002) 062311.
E. Davies and J. Lewis, Communications in Mathematical Physics 17 (1970) 239.
A. Barth and A. Lang, Stochastics. 84 (2012) 217.
I. Gyöngy, Potential Anal. 9 (1998) 1.
M. Sauer and W. Stannat, Math. Comp. 84 (2015) 743.
T. Shardlow, Numer. Funct. Anal. Optim. 20 (1999) 121.
Y. Yan, SIAM J. Numer. Anal. 43 (2005) 1363.
C. Mueller and K. Lee, Amer. Math. Soc. 137 (2009) 1467.
M. Friesl, A. Slavk, P. Stehlk, Appl. Math. Lett. 37 (2014) 86.
C. Tsallis, J. Stat. Phys. 52 (1988) 479.
E. Borges, Physica A 340 (2004) 95.
L.Nivanen, A.Le Mehaute, Q.Wang, Rep. Math. Phys. 52 (2003) 437
W. Chung and H.Hassanabadi, Mod. Phys. Lett. B 33 (2019) 1950368.
Won Sang Chung and H. Hassanabadi, Fortschr. Phys. 2019 1800111.
C. De Boor, Good approximation by splines with variable knots II in Lecture Notes in Mathematics 363, Springer-Verlag, New York, 1974, pp. 12-20.
E. Dorfi and L.Drury, J. Comput. Phys. 69 (1987) 175.
A. Dwyer, R.Kee and B. Sanders, AIAA J 18 (1980) 1205.
D. Hawken, J.Gottlieb and J. Hanssen, J. Comput. Phys. 95 (1991) 254.
W. Chung and H.Hassanabadi, q-deformed mechanics from the discrete mechanics in q-lattice and Nother theorem PREPRINT 2022.
W. Chung and H.Hassanabadi, Bloch theorem and tight binding model in q-Bravais lattice PREPRINT 2022.
P. Kalinay and J. Percus, J. Chem. Phys. 122 (2005) 204701.
R. Zwanzig, J. Stat. Phys. 9 (1973) 215.
D. Reguera and J. Rubi, Phys. Rev. E 64 (2001) 061106.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 W. Sang Chung, Hassan Hassanabadi, J. Křiž
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.