Microphase and macrophase separations in discrete potential fluids

Authors

  • Ivan Guillen Escamilla CUVAlles, Universidad de Guadalajara
  • J. G. Méndez-Bermúdez Universidad de Guadalajara
  • J. C. Mixteco-Sánchez Universidad de Guadalajara
  • G. A. Méndez-Maldonado Universidad de Guadalajara

DOI:

https://doi.org/10.31349/RevMexFis.68.050502

Keywords:

Discrete potential fluids, Phase transitions, Cluster formation

Abstract

In this paper, we studied the liquid-vapor phase diagram and structural properties of discrete potential fluids using Gibbs ensemble simulations and integral equations theory. For this, we considered three discrete fluids, namely, the square well, square well-barrier, and square well-barrier-well. They represent simple models for fluids with competing interactions that exhibit a rich microscopic and macroscopic phase behavior depending on both the strength and range of the attractions and repulsions in the potential. Here, we emphasized a structural behavior near the liquid- vapor coexistence. For the square well-barrier fluid, we observed a possible scenario of a microscopic phase separation associated with a cluster-like formation near the critical region, which could be interpreted as a frustration mechanism of the liquid-vapor transition when either the strength or range of repulsion increases. This microscopic- like separation can be inhibited by suppressing the repulsion or adding an extra well to the interaction potential. However, for the square well fluid with long-range potential, we found evidence of a microscopic aggregation driven solely by attractions.

References

I. R. McDonald, Mol. Phys. 54, 455 (1972).

K. P. Shukla, J. Chem. Phys. 112, 10358 (2000).

B. Smit and C. P. Williams, J. Phys.: Condens. Matt. 2, 4281 (1990). [4] E. Lomba and N. G. Almarza, J. Chem. Phys. 100, 8367 (1994).

P. J. Lu et al., Nature (London) 453, 499 (2008).

A. Stradner et al., Nature 432, 492 (2004).

A. Shukla et al., Proc. Natl. Acad. Sci. 105, 5075 (2008).

A. Stradner et al., Proc. Natl. Acad. Sci. U.S.A. 105, E75 (2008).

J. Chakrabarti, S. Chakrabarti, and H. L ̈owen, J. Phys.: Cond. Matter 18, L81 (2006).

J. M. Bomont, J. L. Bretonnet and D. Costa, J. Chem. Phys. 132, 184508 (2010).

J. M. Kim, R. Castan ̃eda-Priego, Y. Liu and N. J. Wagner, J. Chem. Phys. 134, 064904 (2011). [12] D. Costa, C. Caccamo, J. M. Bomont and J. L. Bretonnet, Mol. Phys. 119, 2845 (2011).

J. M. Bomont, J. L. Bretonnet, D. Costa and J. P. Hansen, J. Chem. Phys. 137, 011101 (2012). [14] A. Imperio and L. Reatto, J. Phys.: Cond. Matt. 16, S3769 (2004).

A. Imperio and L. Reatto, J. Chem. Phys. 124, 164712 (2006).

F. Lo Verso, C. N. Likos, and L. Reatto, Prog. Colloid Polim. Sci. 133, 78 (2006).

A. J. Archer, D. Pini, R. Evans, and L Reatto, J. Chem. Phys. 126, 014104 (2007).

A. J. Archer and N. B. Wilding, Phys. Rev. E 76, 031501 (2007).

A. J. Archer, Phys. Rev. E 78, 031402 (2008).

A. J. Archer, C. Ionescu, D. Pini and L. Reatto, J. Phys.: Cond. Matt. 20, 415106 (2008).

D. F. Schwanzer and G. Kahl, J. Phys.: Cond. Matt. 22, 415103 (2010).

A. J. Archer and R. Evans, Mol. Phys. 109, 2711 (2011).

F. Ghezzi and J. C. Earnshaw, J. Phys.: Cond. Matt. 9, L517 (1997).

R. P. Sear, S. W. Chung, G. Markovich, W. M. Gelbart, and J. R. Heath, Phys. Rev. E 59, R6255

(1999).

E. Sch ̈oll-Paschinger, N.E. Valadez-P ́erez, A.L. Benavides and R. Castan ̃eda-Priego, J. Chem.

Phys. 139, 184902 (2013).

A. B. Bhatia and D. E. Thornton, Phys. Rev. B 2, 3004 (1970).

Y. Liu et al., J. Phys. Chem. B 115, 7238 (2011).

P. D. Godfrin, R. Castan ̃eda-Priego, Y. Liu and N. J. Wagner, in preparation.

A. L. Benavides and A. Gil-Villegas Mol. Phys. 97, 1225 (1999).

A. Vidales, A. L. Benavides and A. Gil-Villegas Mol. Phys. 99, 703 (2001).

L.A. Cervantes, A.L. Benavides and F. del R ́ıo, J. Chem. Phys. 126, 084507 (2007).

I. Guill ́en-Escamilla, M. Ch ́avez-P ́aez and R. Castan ̃eda-Priego, J. Phys.: Cond. Matt. 19, 86224

(2007).

Y. Tago, J. Chem. Phys. 58, 2096 (1973).

A. Loredo-Osti and R. Castaneda-Priego, J. Nanofluids, 1, 36, (2012).

A. F. Collings and I. L. Mclaughlin, J. Chem. Phys. 73, 3390 (1980).

Y. Tang and B.C.Y Lu, J. Chem. Phys. 100, 6665 (1994).

G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys. 110, 1581 (1999).

F. del R ́ıo et al., Mol. Phys. 100, 2531 (2002).

G. Foffi et al., Phys. Rev. E 65, 031407 (2002).

E. Sch ̈oll-Paschinger, A. L. Benavides and R. Castan ̃eda-Priego, J. Chem. Phys. 123, 234513

(2005).

F. F. Betancourt-C ́ardenas, L. A. Galicia-Luna, A. L. Benavides, J. A. Ram ́ırez and E. Sch ̈oll-

Paschinger, Mol. Phys. 106, 113 (2008).

Z. H. Jin, Y. P. Tang and J. Z. Wu, J. Chem. Phys. 134, 174702 (2011).

S. Hlushak, A. Trokhymchuk and S. Sokolowski, J. Chem. Phys. 130, 234511 (2009).

I. Guill ́en-Escamilla, E. Sch ̈oll-Paschinger and R. Castan ̃eda-Priego, Mol. Phys. 108, 141 (2010). [45] I. Guill ́en-Escamilla, E. Sch ̈oll-Paschinger and R. Castan ̃eda-Priego, Physica A 390, 3637 (2011). [46] S. Hlushak, A. Trokhymchuk and S. Sokolowski, J. Chem. Phys. 134, 114101 (2011).

P. Ram ́ırez-Gonz ́alez and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010).

L. L ́opez-Flores, M. Medina-Loyola, J. Chem. Phys.. 143, 174505 (2015).

D. Frenkel and B. Smit, Understanding Molecular Simulation, Second edition, Academic Press,

F. del R ́ıo, E. A ́valos, R. Esp ́ındola, L.F. Rull, G. Jackson and S. Lago, Mol. Phys. 100, 2531

(2002).

J. N. Israelachvili, Intermolecular and Surface Forces, Third Edition, Academic Press, 2010.

J. S. Rowlinson and F. L. Swinton. Liquids and Liquid Mixtures, Third edition, Butter-worth, London, 1982.

L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam, 17, 793 (1914).

J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

J. L. Lebowitz and J. K. Percus, Phys. Rev. 144, 251 (1966).

E. Meeron, J. Math. Phys. 1, 192 (1960).

G. Zerah and J. P. Hansen, J. Chem. Phys. 84, 2336 (1986).

F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984).

R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).

W. R. Smith, D. Henderson, and J. A. Barker, J. Chem. Phys. 55, 4027 (1971).

G. J. Alder, D. A. Young, and M. A. Mark, J. Chem. Phys. 56, 3013 (1972).

Y. Tago, J. Chem. Phys. 60, 1531(1974).

W. R. Smith, D. Henderson and R. D. Murphy, J. Chem. Phys. 61, 2911 (1974).

D. Henderson, J. A. Barker, and W. R. Smith, J. Chem. Phys. 64, 4244 (1976).

D. Henderson, W. G. Maden, and D. D. Fitts, J. Chem. Phys. 64, 5026 (1976).

W. R. Smith, D. Henderson and Y. Tago, J. Chem. Phys. 67, 5308 (1977).

W. R. Smith and D. Henderson, J. Chem. Phys. 69, 319 (1978).

D. Henderson, O. H. Scalise, and W. R. Smith, J. Chem. Phys. 72, 2431 (1980).

P. Bolhuis, M. Hagen and D. Frenkel, Phys. Rev. E 50, 4880 (1994)

J. Bergenholtz and M. Fuchs, Phys. Rev. E 59, 5706 (1999).

L. Fabbian et al., Phys. Rev. E 59, R1347 (1999).

L. A. Davies, A. Gil-Villegas, and G. Jackson, J. Chem. Phys. 111, 8659 (1999).

K. Dawson et al., Phys. Rev. E 63, 011401 (2000).

J. Largo, J. R. Solana, L. Acedo, and A. Santos, Mol. Phys. 101, 2981 (2003).

J. Largo, J. R. Solana, S. B. Yuste, and A. Santos, J. Chem. Phys. 122, 084510 (2005).

M. L ́opez de Haro, S. B. Yuste, and A. Santos, Mol. Phys. 114, 2382 (2016).

J. R. Solana, and B. P. Akhouri, Mol. Phys. 116, 1706 (2018).

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids with Applications to Soft Matter,

Academic Press, Fourth Edition, (2013).

K. C. Ng, J. Chem. Phys. 61, 2680 (1974).

J. J. Nicolas, K. E. Gubbins, W. B. Street, and M. P. Tildesley, Mol. Phys. 37, 1492 (1979).

L. Vega, E. De Miguel, L. F. Rull, G. Jackson, and I. A. McLure, J. Chem. Phys. 96, 2296 (1992). [82] J. R. Elliott and L. Hu, J. Chem. Phys. 110, 3043 (1999).

A. Lang, G. Kahl, C. N. Likos, H. Lwen, and M. Watzlawek, J. Phys.: Condens Matter 11, 10143

(1999).

Downloads

Published

2022-08-16

How to Cite

[1]
I. Guillen Escamilla, J. G. Méndez-Bermúdez, J. C. Mixteco-Sánchez, and G. A. Méndez-Maldonado, “Microphase and macrophase separations in discrete potential fluids”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050502 1–, Aug. 2022.