Description of Nuclear Properties for 114-128Cd Isotopes

Authors

  • A. Mohammed-Ali University of Mosul
  • R. B. Alkhayat University of Mosul
  • M. M. Yousif University of Mosul
  • Mushtaq Al-Jubbori University of Mosul
  • H. H. Kassim University of Kerbala
  • F. I. Sharrad University of Kerbala

DOI:

https://doi.org/10.31349/RevMexFis.68.060401

Keywords:

IBM-1; Energy Level; Potential Energy; Cadmium Isotopes; NEE

Abstract

In this paper, the energy levels of the ground-state band (GSB) and other states for 114−128Cd isotopes have been determined using the Interacting Boson Model (IBM-1) with a New Empirical Equation (NEE). The GSB results showed that the IBM-1, NEE, and available experimental data were all in fairly consistent. The NEE and IBM-1 calculations for the high states above 6+ state are slightly overestimated compared to the experimental data, with the exception of the 114Cd and 118Cd nuclei. Furthermore, the reduced transition probabilities B(E2) extracted from the IBM-1 model agree well with the available experimental data. The potential energy surface (EPS) was also examined with the IBM-1. The EPS contour results for Cd isotopes demonstrate that the Cd isotopes under investigation represent a smooth transition behavior from light Cd nuclei toward a more collective vibrational mode as the neutron number increases.

References

H. Lehmann, and Garrett, PE and Jolie, J and McGrath, CA and Yeh, Minfang and Yates, SW, On the nature of three-phonon excitations in 112Cd, Physics Letters B 387 (1996) 259-26, https://doi.org/10.1016/0370-2693(96)01038-6

F. Corminboeuf et al., Structures and lifetimes of states in 110 Cd. Physical Review C 63 (2000) 014305, https://doi.org/10.1103/PhysRevC.63.014305

P. J. Davies et al., The role of core excitations in the structure and decay of the 16+ spin-gap isomer in 96Cd. Physics Letters B 767 (2017) 474-479, https://doi.org/10.1016/j.physletb.2017.02.013

G. Lorusso et al., β-decay half-lives of 110 neutron-rich nuclei across the N= 82 shell gap: implications for the mechanism and universality of the astrophysical r process. Physical review letters 114 (2015) 192501, https://doi.org/10.1103/PhysRevLett.114.192501

Scharff-Goldhaber, Gertrude, and J. Weneser, System of eveneven nuclei. Physical Review 98 (1955) 212, https://doi.org/10.1103/PhysRev.98.212

F. Iachello and A. Arima, The interacting boson model Cambridge Uni. Press, Cambridge (1987).

G. L. Long, S. J. Zhu and H. Z.Sun, Description of 116,118,120 Cd in the interacting boson model, Journal of Physics G: Nuclear and Particle Physics 21 (1995) 331, https://doi.org/10.1088/0954-3899/21/3/008

F. Iachello, Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Let. 87 (2001) 052502, https://doi.org/10.1103/PhysRevLett.87.052502

A. K. Mheemeed, A. Kh Hussein, and R. B. Kheder, Characterization of alpha-particle tracks in cellulose nitrate LR-115 detectors at various incident energies and angles. Applied Radiation and isotopes 79 (2013) 48, https://doi.org/10.1016/j.apradiso.2013.04.020

P. Cejnar, Jan Jolie, and R. F. Casten, Quantum phase transitions in the shapes of atomic nuclei. Reviews of Modern Physics 82 (2010) 2155, https://doi.org/10.1103/RevModPhys.82.2155

H. H. Kassim, A. A. Abd-Aljbar, M. Abed Al-Jubbori, H. Y. Abdullah, I. Hossain, and F. I. Sharrad, Properties of O(6)- U(5) transition symmetry for 122−124Cd isotopes in IBM. In IOP Conference Series: Materials Science and Engineering, 928 (2020) 072149. https://doi.org/10.1088/1757-899X/928/7/072149

I. Hossain, H. Y. Abdullah, I. M. Ahmed, and M. A. Saeed, Ground-state energy band of even 104−122Cd isotopes under the framework of interacting boson model-1: a review. Journal of Theoretical and Applied Physics 7 (2013) 1-5, https://doi.org/10.1186/2251-7235-7-46

I. Morrison, and R. Smith, The interacting boson approximation and the spectroscopy of the even cadmium and tin isotopes. Nuclear Physics A 350 (1980) 89-108, https://doi.org/10.1016/0375-9474(80)90390-5

M. Pignanelli et al., Octupole excitations in vibrational nuclei and the sdf interacting boson model. Nuclear Physics A 519 (1990) 567-601, https://doi.org/10.1016/0375-9474(90)90447-T

J. Kumpulainen et al., Systematic study of low-spin states in even Cd nuclei. Physical Review C 45 (1992) 640, https://doi.org/10.1103/PhysRevC.45.640

N. Boelaert, N. Smirnova, K. Heyde, and J. Jolie, Shell model description of the low-lying states of the neutron deficient Cd isotopes. Phys. Rev. C 75 (2007) 014316, https://doi.org/10.1103/PhysRevC.75.014316

M. Kadi, N. Warr, P. E. Garrett, J. Jolie, and S. W. Yates, Vibrational and intruder structures in 116Cd. Phys. Rev. C 68 (2003) 031306, https://doi.org/10.1103/PhysRevC.68.031306

A. Gade et al., Dipole excitations in 108 Cd. Phys. Rev. C 67 (2003) 03430, https://doi.org/10.1103/PhysRevC.67.034304

Garrett, PE and Green, KL and Wood, JL,Breakdown of vibrational motion in the isotopes Cd 110- 116, Phys. Rev. C, 78 (2008) 044307, https://doi.org/10.1103/PhysRevC.78.044307

Hossain, I., Hewa Y. Abdullah, I. M. Ahmed, M. A. Saeed, and S. T. Ahmad. Study on ground state energy band of even 114−124Cd isotopes under the framework of interacting boson model (IBM-1). International J. Modern Phys. E 21 (2012) 1250072, https://doi.org/10.1142/S0218301312500723

K. Nomura, and J. Jolie, Structure of even-even cadmium isotopes from the beyond-mean-field interacting boson model. Phys. Rev. C 98 (2018) 024303, https://doi.org/10.1103/PhysRevC.98.024303

A. Leviatan, and N. Gavrielov, J. E. García-Ramos, and P. Van Isacker, Quadrupole phonons in the cadmium isotopes. Physical Review C 98 (2018) 031302, https://doi.org/10.1103/PhysRevC.98.031302

S. M. Harris, Higher order corrections to the cranking model. Physical Review 138 (1965) B509. https://doi.org/10.1103/PhysRev.138.B509

Mo Ao J. Mariscotti, Gertrude Scharff-Goldhaber, and Brian Buck. Phenomenological analysis of ground-state bands in even-even nuclei. Phys. Rev. 178 (1969), 1864, https://doi.org/10.1103/PhysRev.178.1864

A. A. Raduta, R. Budaca, and A. Faessler, Analytical description of the coherent state model for near vibrational and well deformed nuclei. Annals of Physics 327 (2012) 671-704, https://doi.org/10.1016/j.aop.2011.10.004

A. Arima, and F. Iachello, Interacting boson model of collective states I. The vibrational limit. Annals of Phys. 281 (2000) 2-64, https://doi.org/10.1006/aphy.2000.6007

R. C. Ewing, W. J. Weber, and F. W. Clinard Jr., Radiation effects in nuclear waste forms for high-level radioactive waste. Progress in nuclear energy 29 (1995) 63-127, https://doi.org/10.1016/0149-1970(94)00016-Y

R. F. Casten and D. D. Warner, The interacting boson approximation. Rev. Mod. Phys. 60 (1988) 389, https://doi.org/10.1103/RevModPhys.60.389

A.-Jubbori, M. Abed, H. H. Kassim, F. I. Sharrad, and I. Hossain. Deformation properties of the even-even rare-earth Er-Os isotopes for N=100. International Journal of Modern Physics E 27 (2018) 1850035, https://doi.org/10.1142/S0218301318500350

R. F. Casten, and N. V. Zamfir, Empirical realization of a critical point description in atomic nuclei. Physical Review Letters 87 (2001) 052503, https://doi.org/10.1103/PhysRevLett.87.052503

A.-Jubbori, M. A., Huda H. Kassim, F. I. Sharrad, and I. Hossain, Nuclear structure of even 120–136 Ba under the framework of IBM, IVBM and new method (SEF). Nucl. phys. A. 955 (2016) 101-115. https://doi.org/10.1016/j.nuclphysa.2016.06.005

H. H. Khudher, A. K. Hasan, and F. I. Sharrad, Calculation of energy levels, transition probabilities, and potential energy surfaces for 120-126 Xe even-even isotopes. Ukrainian J. Phys. 62 (2017) 152-158,

http://www.nndc.bnl.gov/chart/getENSDFDatasets.jsp

H. H. Kassim, and F. I. Sharrad, Energy levels and electromagnetic transition of 190–196 Pt nuclei. International Journal of Modern Physics E 23 (2014), 1450070, https://doi.org/10.1142/S0218301314500700

H. H. Kassim et al., Nuclear structure of Even 178–182 Hf Isotopes Under the Framework of Interacting Boson Model (IBM1). Iranian J. Science and Technology, Transactions A: Science 42 (2018) 993-999, https://doi.org/10.1007/s40995-016-0104-x

A. E. L. Dieperink, O. Scholten, and F. Iachello, Classical limit of the interacting-boson model. Phys. Rev. Let. 44 (1980) 1747, https://doi.org/10.1103/PhysRevLett.44.1747

Downloads

Published

2022-11-01

How to Cite

[1]
A. Mohammed-Ali, R. B. Alkhayat, M. M. Yousif, M. Al-Jubbori, H. H. Kassim, and F. I. Sharrad, “Description of Nuclear Properties for 114-128Cd Isotopes”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 060401 1–, Nov. 2022.

Issue

Section

04 Atomic and Molecular Physics