Asymptotic solutions for a continuum model of a DC gas discharge incavities with different geometry
Validación de un método numérico espectral de Chebyshev para una descarga de gas de CC mediante soluciones asintóticas en cavidades con diferente geometría
DOI:
https://doi.org/10.31349/RevMexFis.68.051502Keywords:
DC gas discharge, electric potential, Avogadro’s numberAbstract
Analytical solutions for a continuum model of a DC gas discharge were obtained by asymptotic approximations. The solutions are one-dimensional and stationary. Three different cavity configurations of electrode pairs were considered, namely, parallel flat plates, concentric cylinders and concentric spheres. The asymptotic approximations consider nonlinear effects that are present in the dynamics of the plasma which are neglected in most of analytical solutions found in the literature. The obtained solutions determine the distribution of positively and negatively charged particles, as well as the electric potential along the space domain. Analytical results agree quantitatively with results from a spectral numerical solution developed for validation purposes. Such agreement was possible in a regime where the rate of charged particle production was assumed to be very small. Finally the limits of this regime are reported.
References
F. Lei, X. Li, D. Liu, Y. Liu, and S. Zhang, AIP Advances 9 (2019) 085228 https://doi.org/10.1063/1.5118911.
Y. Liu, D. Liu, J. Zhang, B. Sun, A. Yang, and M. G. Kong, Physics of Plasmas 27 (2020) 043512, https://doi.org/10.1063/1.5145033.
Y. Liang et al., Environmental science & technology 46 (2012) 3360, https://doi.org/10.1021/es203770q.
L. A. Feldman and H. Hui, Method of protecting and sterilizing aluminum surfaces on medical instruments, (1997), uS Patent 5,658,529.
H. Shi, Y. Wang, and D. Wang, Physics of Plasmas 15 (2008) 122306, https://doi.org/10.1063/1.3033754.
D. B. Graves and K. F. Jensen, IEEE Transactions on Plasma Science 14 (1986) 78.
Y. P. Raizer and J. E. Allen, Gas discharge physics, Vol. 2 (Springer Berlin, 1997) pp. 8-20.
S. Gao, S. Chen, Z. Ji, W. Tian, and J. Chen, Advances in Mathematical Physics 2017 (2017) 1, https://doi.org/10.1155/2017/9193149.
M. V. Straaten, R. Gijbels, and A. Vertes, Analytical Chemistry 64 (1992) 1855, https://doi.org/10.1021/ac00041a021.
J. Upadhyay, J. Peshl, S. Popović, A.-M. Valente-Feliciano, and L. Vušković, AIP Advances 8 (2018) 085008, https://doi.org/10.1063/1.5045692.
J. T. Gudmundsson, Plasma Sources Science and Technology 29 (2020) 113001 https://doi.org/10.1088/1361-6595/abb7bd.
J. J. Shang, Aerospace 5 (2018) 2, https://doi.org/10.3390/aerospace5010002.
L. N. Trefethen, (1996).
R. Peyret, Spectral methods for incompressible viscous flow, Vol. 148 (Springer Science & Business Media, 2002) pp. 40- 80.
C. Canuto et al., Spectral methods in fluid dynamics (Springer Science and Business Media, 2012).
J. P. Boyd, Chebyshev and Fourier spectral methods (Courier Corporation, 2001) pp. 19-57.
A. Figueroa et al., Plasma Science and Technology-Progress in Physical States and Chemical Reactions (InTech, 2016) https://doi.org/10.5772/62096.
Y. hung Lin and R. A. Adomaitis, Journal of Computational Physics 171 (2001) 731, https://doi.org/10.1006/jcph.2001.6808.
A. Bouchikhi and A. Hamid (2008). 20. S. Gao, J. Feng, W. Li, and J. Cai, The European Physical Journal Applied Physics 88 (2019) 30801, https://doi.org/10.1051/epjap/2019190224.
Y. Lelyukh and V. Zhovtyansky, Ukrainian Journal of Physics 53 (2008) 497.
J. T. Gudmundsson and A. Hecimovic, Plasma Sources Science and Technology 26 (2017) 123001, https://doi.org/10.1088/1361-6595/aa940d.
M. Nurujjaman, R. Narayanan, and A. N. Sekar Iyengar, Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (2007) 043121, https://doi.org/10.1063/1.2815818.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Leonardo Córdova Castillo, José Manuel Olvera Orozco, Sergio Cuevas García, Aldo Figueroa Lara, Federico Vazquez Hurtado
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.