Asymptotic solutions for a continuum model of a DC gas discharge incavities with different geometry

Validación de un método numérico espectral de Chebyshev para una descarga de gas de CC mediante soluciones asintóticas en cavidades con diferente geometría

Authors

  • Leonardo Córdova Castillo Instituto Energías Renovables, Universidad Nacional Autónoma de México
  • José Manuel Olvera Orozco Instituto Energías Renovables, Universidad Nacional Autónoma de México
  • Sergio Cuevas García Instituto Energías Renovables, Universidad Nacional Autónoma de México
  • Aldo Figueroa Lara Conacyt - Centro de Investigación en Ciencias-UAEM
  • Federico Vazquez Hurtado Centro de Investigación en Ciencias (CInC), Universidad Autónoma del Estado de Morelos

DOI:

https://doi.org/10.31349/RevMexFis.68.051502

Keywords:

DC gas discharge, electric potential, Avogadro’s number

Abstract

Analytical solutions for a continuum model of a DC gas discharge were obtained by asymptotic approximations. The solutions are one-dimensional and stationary. Three different cavity configurations of electrode pairs were considered, namely, parallel flat plates, concentric cylinders and concentric spheres. The asymptotic approximations consider nonlinear effects that are present in the dynamics of the plasma which are neglected in most of analytical solutions found in the literature. The obtained solutions determine the distribution of positively and negatively charged particles, as well as the electric potential along the space domain. Analytical results agree quantitatively with results from a spectral numerical solution developed for validation purposes. Such agreement was possible in a regime where the rate of charged particle production was assumed to be very small. Finally the limits of this regime are reported.

Author Biography

Federico Vazquez Hurtado, Centro de Investigación en Ciencias (CInC), Universidad Autónoma del Estado de Morelos

Federico Vazquez currently works at the Department of Physics, Universidad Autónoma del Estado de Morelos. Federico does research in Thermodynamics, Plasma Physics and Fluid Dynamics. Their current project is 'Transport phenomena when going from the macro to the nanometric length scale'.

References

F. Lei, X. Li, D. Liu, Y. Liu, and S. Zhang, AIP Advances 9 (2019) 085228 https://doi.org/10.1063/1.5118911.

Y. Liu, D. Liu, J. Zhang, B. Sun, A. Yang, and M. G. Kong, Physics of Plasmas 27 (2020) 043512, https://doi.org/10.1063/1.5145033.

Y. Liang et al., Environmental science & technology 46 (2012) 3360, https://doi.org/10.1021/es203770q.

L. A. Feldman and H. Hui, Method of protecting and sterilizing aluminum surfaces on medical instruments, (1997), uS Patent 5,658,529.

H. Shi, Y. Wang, and D. Wang, Physics of Plasmas 15 (2008) 122306, https://doi.org/10.1063/1.3033754.

D. B. Graves and K. F. Jensen, IEEE Transactions on Plasma Science 14 (1986) 78.

Y. P. Raizer and J. E. Allen, Gas discharge physics, Vol. 2 (Springer Berlin, 1997) pp. 8-20.

S. Gao, S. Chen, Z. Ji, W. Tian, and J. Chen, Advances in Mathematical Physics 2017 (2017) 1, https://doi.org/10.1155/2017/9193149.

M. V. Straaten, R. Gijbels, and A. Vertes, Analytical Chemistry 64 (1992) 1855, https://doi.org/10.1021/ac00041a021.

J. Upadhyay, J. Peshl, S. Popović, A.-M. Valente-Feliciano, and L. Vušković, AIP Advances 8 (2018) 085008, https://doi.org/10.1063/1.5045692.

J. T. Gudmundsson, Plasma Sources Science and Technology 29 (2020) 113001 https://doi.org/10.1088/1361-6595/abb7bd.

J. J. Shang, Aerospace 5 (2018) 2, https://doi.org/10.3390/aerospace5010002.

L. N. Trefethen, (1996).

R. Peyret, Spectral methods for incompressible viscous flow, Vol. 148 (Springer Science & Business Media, 2002) pp. 40- 80.

C. Canuto et al., Spectral methods in fluid dynamics (Springer Science and Business Media, 2012).

J. P. Boyd, Chebyshev and Fourier spectral methods (Courier Corporation, 2001) pp. 19-57.

A. Figueroa et al., Plasma Science and Technology-Progress in Physical States and Chemical Reactions (InTech, 2016) https://doi.org/10.5772/62096.

Y. hung Lin and R. A. Adomaitis, Journal of Computational Physics 171 (2001) 731, https://doi.org/10.1006/jcph.2001.6808.

A. Bouchikhi and A. Hamid (2008). 20. S. Gao, J. Feng, W. Li, and J. Cai, The European Physical Journal Applied Physics 88 (2019) 30801, https://doi.org/10.1051/epjap/2019190224.

Y. Lelyukh and V. Zhovtyansky, Ukrainian Journal of Physics 53 (2008) 497.

J. T. Gudmundsson and A. Hecimovic, Plasma Sources Science and Technology 26 (2017) 123001, https://doi.org/10.1088/1361-6595/aa940d.

M. Nurujjaman, R. Narayanan, and A. N. Sekar Iyengar, Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (2007) 043121, https://doi.org/10.1063/1.2815818.

Downloads

Published

2022-08-16

How to Cite

[1]
L. Córdova Castillo, J. M. Olvera Orozco, S. . Cuevas García, A. . Figueroa Lara, and F. Vazquez Hurtado, “Asymptotic solutions for a continuum model of a DC gas discharge incavities with different geometry: Validación de un método numérico espectral de Chebyshev para una descarga de gas de CC mediante soluciones asintóticas en cavidades con diferente geometría”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 051502 1–, Aug. 2022.