Physical and technological analysis of the AlGaN-based UVC-LED: an extended discussion focused on cubic phase as an alternative for surface disinfection.

Authors

  • Horacio Solís-Cisneros Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez https://orcid.org/0000-0002-3555-3575
  • Dr. Carlos Hernádez-Gutiérrez Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez
  • Abdur-Rehman Anwar Institute of High-Pressure Physics/Polish Academy of Sciences
  • Dr. Perla Sevilla-Camacho Cuerpo Académico de Energía y sustentabilidad/Universidad Politécnica de Chiapas
  • Dr. Jorge Camas-Anzueto Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez
  • Dr. Rub´én Grajales-Coutiño Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez
  • Raul Trejo-Hernández Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
  • Dr. Yenny Casallas-Moreno CONACYT-Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional
  • Dr. Máximo López-López Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Naciona

DOI:

https://doi.org/10.31349/RevMexFis.68.020301

Keywords:

LED, zinc-blende, III-nitrides, UVC, Disinfection, AlGaN

Abstract

Crisis in coronavirus times requires understanding the effects on society and establishing efficient mechanisms to prevent infections. The disinfection of personal protection equipment by UVC light remains a key opportunity area. Therefore, this letter presents the main drawbacks and challenges on the fabrication of deep ultraviolet LEDs based on III-nitrides, such as the substrate selection, dislocation reduction, the increase of external quantum efficiency, enhancement of the radiative recombination in the active region, the complications to reach high Al content in AlGaN-based UVC LED avoiding the reduction of the p-doping, replacing the p-GaN contact layer by p-AlGaN without hindering the deposition of ohmic contacts. Furthermore, the cubic phase is suggested as a promising candidate for AlGaN UVC-LEDs applications as is discussed in this work.

References

World Health Organization, WHO Coronavirus Dis. Dashboard (2020).

H. Jiang, Y. Zhou, and W. Tang, Maintaining HIV care during the COVID-19 pandemic. Lancet HIV 7(5), e308–e309 (2020).

N. E. Sharpless, COVID-19 and cancer. Science (80-. ). 368(6497), 1290 LP – 1290 (2020).

A. Kutikov, D. S. Weinberg, M. J. Edelman, E. M. Horwitz, R. G. Uzzo, and R. I. Fisher, A War on Two Fronts: Cancer Care in the Time of COVID-19. Ann. Intern. Med. 172(11), 756–758 (2020).

J. van de Haar, L. R. Hoes, C. E. Coles, K. Seamon, S. Fröhling, D. Jäger, F. Valenza, F. de Braud, L. De Petris, J. Bergh, I. Ernberg, B. Besse, F. Barlesi, E. Garralda, A. Piris-Giménez, M. Baumann, G. Apolone, J. C. Soria, J. Tabernero, C. Caldas, and E. E. Voest, Caring for patients with cancer in the COVID-19 era. Nat. Med. 26(5), 665–671 (2020).

Wold Health Organization, The Impact of the COVID-19 Pandemic on Noncommunicable Disease Resources and Services: Results of a Rapid Assessment, Geneva, Switzerland (2020).

B. Marroquín, V. Vine, and R. Morgan, Mental health during the COVID-19 pandemic: Effects of stay-at-home policies, social distancing behavior, and social resources. Psychiatry Res. 293(July), 113419 (2020).

X. Xie, Q. Xue, Y. Zhou, Q. Liu, J. Zhang, and R. Song, Mental Health Status Among Children in Home Confinement During the Coronavirus Disease 2019 Outbreak in Hubei Province, China. JAMA Pediatr. 7, 2–4 (2020).

Institute for Economics & Peace, Global Peace Index 2020: Measuring Peace in a Complex World, Sidney (2020).

World Bank, Poverty and Shared Prosperity 2020 : Reversals of Fortune, World Bank, The World Bank, Washington, DC (2020).

World Health Organization, Advice on the use of masks in the context of COVID-19: interim guidance. World Heal. Organ. No. 1, 18 (2020).

S. Ugalmugle, and R. Swain, Glob. Mark. Insights 220 (2020).

S. Mehta, F. C. Dooley, S. Gore, B. Spiess, N. Gravenstein, and N. N. Algarra, Community-Based Production of Quality Face Masks for Personal Protection During the COVID-19 Pandemic. Am. J. Med. Qual. 1–5 (2020).

T. A. Aragaw, Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159(June), 111517 (2020).

C. E. Rodriguez-Martinez, M. P. Sossa-Briceño, and J. A. Cortés, Decontamination and reuse of N95 filtering facemask respirators: A systematic review of the literature. Am. J. Infect. Control 000, 1–13 (2020).

H. Vu, N. M. Kieu, D. T. Gam, S. Shin, T. Q. Tien, and N. H. Vu, Design and Evaluation of Uniform LED Illumination Based on Double Linear Fresnel Lenses. Appl. Sci. 10(9), 3257 (2020).

E. Espid, and F. Taghipour, UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State Mater. Sci. 42(5), 416–432 (2017).

P. O. Nyangaresi, Y. Qin, G. Chen, B. Zhang, Y. Lu, and L. Shen, Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria. Water Res. 157, 218–227 (2019).

C. S. Heilingloh, U. W. Aufderhorst, L. Schipper, U. Dittmer, O. Witzke, D. Yang, X. Zheng, K. Sutter, M. Trilling, M. Alt, E. Steinmann, and A. Krawczyk, Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control 48(10), 1273–1275 (2020).

M. Eickmann, U. Gravemann, W. Handke, F. Tolksdorf, S. Reichenberg, T. H. Müller, and A. Seltsam, Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion 58(9), 2202–2207 (2018).

J.-L. Sagripanti, and C. D. Lytle, Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch. Virol. 156(3), 489–494 (2011).

C. A. Bolton J R and Cotton, The Ultraviolet Disinfection Handbook, (2008).

A. Green, V. Popović, K. Warriner, and T. Koutchma, The efficacy of UVC LEDs and low pressure mercury lamps for the reduction of Escherichia coli O157:H7 and Listeria monocytogenes on produce. Innov. Food Sci. Emerg. Technol. 64, 102410 (2020).

D. kyun Kim, and D. H. Kang, Effect of surface characteristics on the bactericidal efficacy of UVC LEDs. Food Control 108(March 2019) (2020).

J. Chen, S. Loeb, and J. H. Kim, LED revolution: Fundamentals and prospects for UV disinfection applications. Environ. Sci. Water Res. Technol. 3(2), 188–202 (2017).

Y. Gerchman, H. Mamane, N. Friedman, and M. Mandelboim, UV-LED disinfection of Coronavirus: Wavelength effect. J. Photochem. Photobiol. B Biol. 212, 112044 (2020).

A. Ringangaonkar, and S. N. Kulkarni, A Comparative Study on UVC Light Devices To Inactivate Viruses. Int. Res. J. Mod. Eng. Technol. Sci. 2(09), 1333–1348 (2020).

M. Raeiszadeh, and B. Adeli, A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics 7(11), 2941–2951 (2020).

A. J. Prussin, E. B. Garcia, and L. C. Marr, Total concentrations of virus and bacteria in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).

A. Barlev, and D. Sen, DNA’s Encounter with Ultraviolet Light: An Instinct for Self-Preservation? Acc. Chem. Res. 51(2), 526–533 (2018).

R. Verbeke, I. Lentacker, S. C. De Smedt, and H. Dewitte, Three decades of messenger RNA vaccine development. Nano Today 28, 100766 (2019).

T. Schlake, A. Thess, M. Fotin-Mleczek, and K.-J. Kallen, Developing mRNA-vaccine technologies. RNA Biol. 9(11), 1319–1330 (2012).

J. Cohen, Vaccine designers take first shots at COVID-19. Science (80-. ). 368(6486), 14–16 (2020).

P. Midoux, and C. Pichon, Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines 14(2), 221–234 (2015).

F. Krammer, SARS-CoV-2 vaccines in development. Nature 586(7830), 516–527 (2020).

G. Chauhan, M. J. Madou, S. Kalra, V. Chopra, D. Ghosh, and S. O. Martinez-Chapa, Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano 14(7), 7760–7782 (2020).

S. Duffy, Why are RNA virus mutation rates so damn high? PLOS Biol. 16(8), e3000003 (2018).

Q. Li, J. Wu, J. Nie, L. Zhang, H. Hao, S. Liu, C. Zhao, Q. Zhang, H. Liu, L. Nie, H. Qin, M. Wang, Q. Lu, X. Li, Q. Sun, J. Liu, L. Zhang, X. Li, W. Huang, and Y. Wang, The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 182(5), 1284-1294.e9 (2020).

J. Hu, C.-L. He, Q.-Z. Gao, G.-J. Zhang, X.-X. Cao, Q.-X. Long, H.-J. Deng, L.-Y. Huang, J. Chen, K. Wang, N. Tang, and A.-L. Huang, D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity. bioRxiv 2020.06.20.161323 (2020).

W. Kowalski, Ultraviolet Germical Irradiation, Springer-Verlag Berlin Heidelberg, New York (2009).

M. Heßling, K. Hönes, P. Vatter, and C. Lingenfelder, Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies. GMS Hyg. Infect. Control 15, Doc08–Doc08 (2020).

Y. Cao, W. Chen, M. Li, B. Xu, J. Fan, and G. Zhang, Simulation Based Design of Deep Ultraviolet LED Array Module Used in Virus Disinfection., in 2020 21st Int. Conf. Electron. Packag. Technol., 1–4 (2020).

M. Umar, F. Roddick, and L. Fan, Comparison of UVC Lamp and UVC-light Emitting Diodes for Treating Municipal Wastewater Reverse Osmosis Concentrate. 2476, 18–21 (2014).

S. S. Nunayon, H. Zhang, and A. C. K. Lai, Comparison of disinfection performance of UVC-LED and conventional upper-room UVGI systems. Indoor Air 30(1), 180–191 (2020).

M. Lindblad, E. Tano, C. Lindahl, and F. Huss, Ultraviolet-C decontamination of a hospital room: Amount of UV light needed. Burns 46(4), 842–849 (2020).

A. E. Torres, A. B. Lyons, S. Narla, I. Kohli, I. Kohli, A. Parks-Miller, D. Ozog, I. H. Hamzavi, and H. W. Lim, Ultraviolet-C and other methods of decontamination of filtering facepiece N-95 respirators during the COVID-19 pandemic. Photochem. Photobiol. Sci. 19(6), 746–751 (2020).

L. Liao, W. Xiao, M. Zhao, X. Yu, H. Wang, Q. Wang, S. Chu, and Y. Cui, Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS Nano 14(5), 6348–6356 (2020).

Y. Xiao, X. N. Chu, M. He, X. C. Liu, and J. Y. Hu, Impact of UVA pre-radiation on UVC disinfection performance: Inactivation, repair and mechanism study. Water Res. 141, 279–288 (2018).

H. P. Maruska, and J. J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15(10), 327–329 (1969).

Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl. Phys. Lett. 106(16), 8–12 (2015).

T. D. Moustakas, Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy. MRS Commun. 6(3), 247–269 (2016).

M. Kneissl, and J. Rass, III-Nitride Ultraviolet Emitters, (2016).

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 11(2) (2017).

D. Feezell, and S. Nakamura, Invention, development, and status of the blue light-emitting diode, the enabler of solid-state lighting. Comptes Rendus Phys. 19(3), 113–133 (2018).

J. Qiao, J. Zhao, Q. Liu, and Z. Xia, Recent advances in solid-state LED phosphors with thermally stable luminescence. J. Rare Earths 37(6), 565–572 (2019).

Y. C. Tsai, and C. Bayram, Structural and Electronic Properties of Hexagonal and Cubic Phase AlGaInN Alloys Investigated Using First Principles Calculations. Sci. Rep. 9(1), 1–9 (2019).

H. Gao, H. Ye, Z. Yu, Y. Zhang, Y. Liu, and Y. Li, Point defects and composition in hexagonal group-III nitride monolayers: A first-principles calculation. Superlattices Microstruct. 112, 136–142 (2017).

F. Li, L. Wang, G. Zhao, Y. Meng, H. Li, Y. Chen, S. Yang, P. Jin, and Z. Wang, The Residual Stress and Al Incorporation of AlGaN Epilayers by Metalorganic Chemical Vapor Deposition. J. Nanosci. Nanotechnol. 18(11) (2018).

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89(11 I), 5815–5875 (2001).

I. Vurgaftman, and J. R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94(6), 3675–3696 (2003).

L. Zhao, S. Zhang, Y. Zhang, J. Yan, L. Zhang, Y. Ai, Y. Guo, R. Ni, J. Wang, and J. Li, AlGaN-based ultraviolet light-emitting diodes on sputter-deposited AlN templates with epitaxial AlN/AlGaN superlattices. Superlattices Microstruct. 113, 713–719 (2018).

Y. Hou, and Z. Guo, Enhancement of hole injection in deep ultraviolet light-emitting diodes using a serrated P-type layer. Opt. Commun. 433, 236–241 (2019).

Y. Kuo, J. Chang, F. Chen, Y. Shih, and H. Chang, Numerical Investigation on the Carrier Transport Characteristics of AlGaN Deep-UV Light-Emitting Diodes. IEEE J. Quantum Electron. 52(4), 1–5 (2016).

H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, Marked Enhancement in the Efficiency of Deep-Ultraviolet AlGaN Light-Emitting Diodes by Using a Multiquantum-Barrier Electron Blocking Layer. Appl. Phys. Express 3(3), 31002 (2010).

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneissl, Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes. Phys. status solidi 213(1), 210–214 (2016).

M. Shatalov, W. Sun, R. Jain, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 29(8), 84007 (2014).

J. Smalc-Koziorοwska, J. Moneta, P. Chatzopoulou, I. G. Vasileiadis, C. Bazioti, Ø. Prytz, I. Belabbas, P. Komninou, and G. P. Dimitrakopulos, The heterogeneous nucleation of threading dislocations on partial dislocations in III-nitride epilayers. Sci. Rep. 10(1), 17371 (2020).

X. Li, S. Sundaram, P. Disseix, G. Gac, S. Le Bouchoule, G. Patriarche, F. Réveret, J. Leymarie, Y. El Gmili, T. Moudakir, F. Genty, J.-P. Salvestrini, R. D. Dupuis, P. L. Voss, and A. Ougazzaden, AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm. Opt. Mater. Express 5(2), 380–392 (2015).

M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, S. Kamiyama, M. Yamaguchi, Y. Honda, H. Amano, and I. Akasaki, AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates. Appl. Phys. Express 4(9), 92102 (2011).

W. Shin, A. Pandey, X. Liu, Y. Sun, and Z. Mi, Photonic crystal tunnel junction deep ultraviolet light emitting diodes with enhanced light extraction efficiency. Opt. Express 27(26), 38413 (2019).

N. Maeda, and H. Hirayama, Improvement of Ligth-Extraction Efficiency of Deep-UV LEDs using Transparent p-AlGaN Contact Layer., in 2013 Conf. Lasers Electro-Optics Pacific Rim, Kyoto, Japan, 1–2 (2013).

B. K. SaifAddin, A. Almogbel, C. J. Zollner, H. Foronda, A. Alyamani, A. Albadri, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC. Semicond. Sci. Technol. 34(3), 35007 (2019).

L. Anderson, W. Lee, W. Schaff, and J. C. Tang, US 10,516,076 B2 (2019).

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5(8), 6–9 (2012).

P. Sun, X. Bao, S. Liu, C. Ye, Z. Yuan, Y. Wu, S. Li, and J. Kang, Advantages of AlGaN-based deep ultraviolet light-emitting diodes with a superlattice electron blocking layer. Superlattices Microstruct. 85, 59–66 (2015).

H. Shi, H. Gu, J. Li, X. Yang, J. Zhang, R. Yuan, X. Chen, and N. Liu, Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers. Opt. Commun. 441, 149–154 (2019).

L. Wang, W. He, T. Zheng, Z. Chen, and S. Zheng, Enhanced optical performance of AlGaN-based deep-ultraviolet light-emitting diode with m-shaped hole blocking layer and w-shaped electron blocking layer. Superlattices Microstruct. 133, 106188 (2019).

R. K. Mondal, V. Chatterjee, and S. Pal, Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes. Phys. E Low-dimensional Syst. Nanostructures 108, 233–237 (2019).

J. Zhang, W. Tian, F. Wu, W. Yan, H. Xiong, J. Dai, Y. Fang, Z. Wu, and C. Chen, The advantages of AlGaN-based UV-LEDs inserted with a p-AlGaN layer between the EBL and active region. IEEE Photonics J. 5(4), 1600310 (2013).

F. Scholz, Compound Semiconductors: Physics, Technology, and Device Concepts, Jenny Stanford Publishing (2017).

Y. Liao, C. Thomidis, C. K. Kao, and T. D. Moustakas, AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Appl. Phys. Lett. 98(8), 98–101 (2011).

T. D. Moustakas, Y. Liao, C. Kao, C. Thomidis, A. Bhattacharyya, D. Bhattarai, and A. Moldawer, Deep UV-LEDs with high IQE based on AlGaN alloys with strong band structure potential fluctuations. Light. Diodes Mater. Devices, Appl. Solid State Light. XVI 8278, 82780L (2012).

Y. Muramoto, M. Kimura, and S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29(8) (2014).

A. S. Evseenkoy, S. A. Tarasov, A. Lamkin, A. V Solomonov, and I. Member, The Efficiency of UV LEDs Based on GaN / AIGaN Heterostructures., in 2015 IEEE NW Russ. Young Res. Electr. Electron. Eng. Conf., 27–29 (2015).

J. Rass, and N. L. Ploch, Nitride-Based UV-LEDs and Their Application. Opt. Photonik 11(3), 36–40 (2016).

S. Hagedorn, S. Walde, N. Susilo, C. Netzel, N. Tillner, R. S. Unger, P. Manley, E. Ziffer, T. Wernicke, C. Becker, H. J. Lugauer, M. Kneissl, and M. Weyers, Improving AlN Crystal Quality and Strain Management on Nanopatterned Sapphire Substrates by High-Temperature Annealing for UVC Light-Emitting Diodes. Phys. Status Solidi Appl. Mater. Sci. 217(7), 1–7 (2020).

N. Susilo, S. Hagedorn, D. Jaeger, H. Miyake, U. Zeimer, C. Reich, B. Neuschulz, L. Sulmoni, M. Guttmann, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett. 112(4) (2018).

A. Ganguly, S. Chattopadhyay, K. H. Chen, and L. C. Chen, Production and storage of energy with one-dimensional semiconductor nanostructures. Crit. Rev. Solid State Mater. Sci. 39(2), 109–153 (2014).

E. F. de Almeida, F. de Brito Mota, C. M. C. de Castilho, A. Kakanakova-Georgieva, and G. K. Gueorguiev, Defects in hexagonal-AlN sheets by first-principles calculations. Eur. Phys. J. B 85(1), 48 (2012).

A. Uedono, S. Ishibashi, N. Oshima, R. Suzuki, and M. Sumiya, Point Defect Characterization of Group-III Nitrides by Using Monoenergetic Positron Beams. ECS Trans. 61(5), 19–30 (2014).

M. Usman, S. Malik, and M. Munsif, AlGaN-based ultraviolet light-emitting diodes: challenges and opportunities. Luminescence n/a(n/a) (2020).

Y. Nagasawa, and A. Hirano, A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire. Appl. Sci. 8(8), 1264 (2018).

B. K. Saifaddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. Denbaars, and J. S. Speck, AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates. ACS Photonics 7(3), 554–561 (2020).

M. Usman, M. Munsif, U. Mushtaq, A.-R. Anwar, and N. Muhammad, Green gap in GaN-based light-emitting diodes: in perspective. Crit. Rev. Solid State Mater. Sci. 1–18 (2020).

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26(1) (2011).

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 102(24), 1–5 (2013).

J. Yan, J. Wang, Y. Zhang, P. Cong, L. Sun, Y. Tian, C. Zhao, and J. Li, AlGaN-based deep-ultraviolet light-emitting diodes grown on High-quality AlN template using MOVPE. J. Cryst. Growth 414, 254–257 (2015).

J. Zhao, H. Hu, Y. Lei, H. Wan, L. Gong, and S. Zhou, Heteroepitaxial growth of high-quality and crack-free AlN film on sapphire substrate with nanometer-scale-thick AlN nucleation layer for AlGaN-based deep ultraviolet light-emitting diodes. Nanomaterials 9(11) (2019).

H.-M. Wang, J.-P. Zhang, C.-Q. Chen, Q. Fareed, J.-W. Yang, and M. A. Khan, AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81(4), 604–606 (2002).

J. Kim, J. Pyeon, M. Jeon, and O. Nam, Growth and characterization of high quality {AlN} using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet. Jpn. J. Appl. Phys. 54(8), 81001 (2015).

M. Kaneko, S. Ueta, M. Horita, T. Kimoto, and J. Suda, Deep-ultraviolet light emission from 4H-AlN/4H-GaN short-period superlattice grown on 4H-SiC(112¯0). Appl. Phys. Lett. 112(1), 12106 (2018).

Y. Huang, J. Liu, X. Sun, X. Zhan, Q. Sun, H. Gao, M. Feng, Y. Zhou, M. Ikeda, and H. Yang, Crack-free high quality 2 μm-thick Al0.5Ga0.5N grown on a Si substrate with a superlattice transition layer. CrystEngComm 22(7), 1160–1165 (2020).

S. Zhao, S. Y. Woo, S. M. Sadaf, Y. Wu, A. Pofelski, D. A. Laleyan, R. T. Rashid, Y. Wang, G. A. Botton, and Z. Mi, Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics. APL Mater. 4(8) (2016).

H. Sun, M. K. Shakfa, M. M. Muhammed, B. Janjua, K. H. Li, R. Lin, T. K. Ng, I. S. Roqan, B. S. Ooi, and X. Li, Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes. ACS Photonics 5(3), 964–970 (2018).

S. M. Sadaf, Y. H. Ra, S. Zhao, T. Szkopek, and Z. Mi, Structural and electrical characterization of monolithic core-double shell n-GaN/Al/p-AlGaN nanowire heterostructures grown by molecular beam epitaxy. Nanoscale 11(9), 408–4090 (2019).

R. F. Pierret, Advanced Semiconductor Fundamentals, Prentice Hall (2003).

J. J. Huang, H. C. Kuo, and S. C. Shen, Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies and Applications, Elsevier Science (2014).

C. R. Haughn, G. Rupper, T. Wunderer, Z. Yang, N. M. Johnson, M. Wraback, and G. A. Garrett, Highly radiative nature of ultra-thin c-plane Al-rich AlGaN/AlN quantum wells for deep ultraviolet emitters. Appl. Phys. Lett. 114(10), 102101 (2019).

Q. Guo, R. Kirste, S. Mita, J. Tweedie, P. Reddy, S. Washiyama, M. H. Breckenridge, R. Collazo, and Z. Sitar, The polarization field in Al-rich AlGaN multiple quantum wells. Jpn. J. Appl. Phys. 58(SC), SCCC10 (2019).

N. Grandjean, J. Massies, and M. Leroux, Self-limitation of AlGaN/GaN quantum well energy by built-in polarization field. Appl. Phys. Lett. 74(16), 2361–2363 (1999).

N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt, and J. Massies, Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. J. Appl. Phys. 86(7), 3714–3720 (1999).

M. A. Khan, N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada, and H. Hirayama, 13 mW operation of a 295–310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. J. Mater. Chem. C 7(1), 143–152 (2019).

N. Norimichi, H. Hirayama, T. Yatabe, and N. Kamata, 222 nm single-peaked deep-UV LED with thin AlGaN quantum well layers. Phys. status solidi c 6(S2), S459–S461 (2009).

H. Hirayama, N. Noguchi, T. Yatabe, and N. Kamata, 227 nm AlGaN Light-Emitting Diode with 0.15 mW Output Power Realized using a Thin Quantum Well and AlN Buffer with Reduced Threading Dislocation Density. Appl. Phys. Express 1, 51101 (2008).

U. Köhler, D. J. As, S. Potthast, A. Khartchenko, K. Lischka, O. C. Noriega, E. A. Meneses, A. Tabata, S. C. P. Rodrigues, L. M. R. Scolfaro, G. M. Sipahi, and J. R. Leite, Optical Characterization of Cubic AlGaN/GaN Quantum Wells. Phys. status solidi 192(1), 129–134 (2002).

A. Islam, D.-S. Shim, and J.-I. Shim, Enhanced Radiative Recombination Rate by Local Potential Fluctuation in InGaN/AlGaN Near-Ultraviolet Light-Emitting Diodes. Appl. Sci. 9(5), 871 (2019).

S. M. Islam, K. Lee, J. Verma, V. Protasenko, S. Rouvimov, S. Bharadwaj, H. Xing, and D. Jena, MBE-grown 232-270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl. Phys. Lett. 110(4) (2017).

D. Liu, S. J. Cho, J. Park, J. Gong, J. H. Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A. R. K. Kalapala, J. D. Albrecht, W. Zhou, B. Moody, and Z. Ma, 226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113(1) (2018).

Y. Kashima, N. Maeda, E. Matsuura, M. Jo, T. Iwai, T. Morita, M. Kokubo, T. Tashiro, R. Kamimura, Y. Osada, H. Takagi, and H. Hirayama, High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 11, 1–4 (2018).

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10(3) (2017).

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, Recent progress and future prospects of AlGaN- diodes. Jpn. J. Appl. Phys. 53(10), 100209 (2014).

M. Kaneda, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, Y. Honda, H. Amano, and I. Akasaki, Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn. J. Appl. Phys. 56(6), 61002 (2017).

M. Usman, A.-R. Anwar, and M. Munsif, Review—A Survey of Simulations on Device Engineering of GaN-Based Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 9(6), 66002 (2020).

M. Shatalov, R. Jain, T. Saxena, A. Dobrinsky, and M. Shur, Chapter Two - Development of Deep UV LEDs and Current Problems in Material and Device Technology., in III-Nitride Semicond. Optoelectron., Z. Mi and C. B. T.-S. and S. Jagadish, Eds., Elsevier, 45–83 (2017).

M. A. Khan, Y. Itokazu, N. Maeda, M. Jo, Y. Yamada, and H. Hirayama, External Quantum Efficiency of 6.5% at 300 nm Emission and 4.7% at 310 nm Emission on Bare Wafer of AlGaN-Based UVB LEDs. ACS Appl. Electron. Mater. 2(7), 1892–1907 (2020).

J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, Barrier effect on hole transport and carrier distribution in InGaN∕GaN multiple quantum well visible light-emitting diodes. Appl. Phys. Lett. 93(2), 21102 (2008).

M. Ajmal Khan, E. Matsuura, Y. Kashima, and H. Hirayama, Influence of Undoped-AlGaN Final Barrier of MQWs on the Performance of Lateral-Type UVB LEDs. Phys. status solidi 216(18), 1970059 (2019).

Z.-H. Zhang, S.-W. Huang Chen, C. Chu, K. Tian, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency. Nanoscale Res. Lett. 13(1), 122 (2018).

S. Wang, Y. A. Yin, H. Gu, N. Wang, and L. Liu, Graded AlGaN/AlGaN Superlattice Insert Layer Improved Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. J. Disp. Technol. 12(10), 1112–1116 (2016).

J. Huang, Z. Guo, M. Guo, Y. Liu, S. Yao, J. Sun, and H. Sun, Study of Deep Ultraviolet Light-Emitting Diodes with a p-AlInN/AlGaN Superlattice Electron-Blocking Layer. J. Electron. Mater. 46(7), 4527–4531 (2017).

X. Fan, H. Sun, X. Li, H. Sun, C. Zhang, Z. Zhang, and Z. Guo, Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer. Superlattices Microstruct. 88, 467–473 (2015).

Z.-H. Zhang, J. Kou, S.-W. H. Chen, H. Shao, J. Che, C. Chu, K. Tian, Y. Zhang, W. Bi, and H.-C. Kuo, Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes. Photon. Res. 7(4), B1--B6 (2019).

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, Thermal ionization energy of Si and Mg in AlGaN. J. Cryst. Growth 189–190, 528–531 (1998).

B. Sarkar, S. Washiyama, M. H. Breckenridge, A. Klump, J. N. Baker, P. Reddy, J. Tweedie, S. Mita, R. Kirste, D. L. Irving, R. Collazo, and Z. Sitar, N- and P- type Doping in Al-rich AlGaN and AlN. ECS Trans. 86(12), 25–30 (2018).

A. T. M. Golam Sarwar, B. J. May, M. F. Chisholm, G. J. Duscher, and R. C. Myers, Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence. Nanoscale 8(15), 8024–8032 (2016).

H. Hirayama, T. Takano, J. Sakai, T. Mino, K. Tsubaki, N. Maeda, M. Jo, Y. Kanazawa, I. Ohshima, T. Matsumoto, and N. Kamata, Realization of over 10% EQE AlGaN deep-UV LED by using transparent p-AlGaN contact layer. Conf. Dig. - IEEE Int. Semicond. Laser Conf. 91(6), 7–8 (2016).

S. Bharadwaj, S. M. Islam, K. Lee, A. Devine, V. Protasenko, S. Rouvimov, H. G. Xing, and D. Jena, High-temperature p-type polarization doped AlGaN cladding for sub-250 nm deep-UV quantum well LEDs by MBE. Device Res. Conf. - Conf. Dig. DRC 10(2002), 5–6 (2017).

C. Kuhn, L. Sulmoni, M. Guttmann, J. Glaab, N. Susilo, T. Wernicke, M. Weyers, and M. Kneissl, MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs. Photonics Res. 7(5), B7 (2019).

C. A. Hernández-Gutierrez, Y. Kudriavtsev, E. Mota, A. G. Hernández, A. Escobosa-Echavarría, V. Sánchez-Resendiz, Y. L. Casallas-Moreno, and M. López-López, A new method of making ohmic contacts to p-GaN. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 388, 35–40 (2016).

T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat. Photonics 4(11), 767–770 (2010).

K. Ding, V. Avrutin, Ü. Özgür, and H. Morkoç, Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes. Crystals 7(10) (2017).

L. Lu, G. G. Ding, Y. Zhang, Y. H. Liu, and F. J. Xu, Improved performance of AlGaN-based deep ultraviolet light-emitting diode using modulated-taper design for p-AlGaN layer. Semicond. Sci. Technol. 33(3), 35008 (2018).

J.-W. Min, D. Priante, M. Tangi, G. Liu, C. H. Kang, A. Prabaswara, C. Zhao, L. Al-Maghrabi, Y. Alaskar, A. M. Albadri, A. Y. Alyamani, T. K. Ng, and B. S. Ooi, Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. J. Nanophotonics 12(04), 1 (2018).

Z. Chen, J. Hoo, Y. Chen, V. Wang, and S. Guo, Study of aln based materials grown on nano-patterned sapphire substrates for deep ultraviolet led applications. Jpn. J. Appl. Phys. 58(SC) (2019).

W. Luo, B. Liu, Z. Li, L. Li, Q. Yang, L. Pan, C. Li, D. Zhang, X. Dong, D. Peng, F. Yang, and R. Zhang, Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy. Appl. Phys. Lett. 113(7) (2018).

C. A. Hernández-Gutiérrez, Y. L. Casallas-Moreno, V. T. Rangel-Kuoppa, D. Cardona, Y. Hu, Y. Kudriatsev, M. A. Zambrano-Serrano, S. Gallardo-Hernandez, and M. Lopez-Lopez, Study of the heavily p-type doping of cubic GaN with Mg. Sci. Rep. 10(1), 1–7 (2020).

Z. Wu, X. Zhang, Q. Dai, J. Zhao, A. Fan, S. Wang, and Y. Cui, High hole concentration in nonpolar a-plane p-AlGaN films with Mg-delta doping technique. Superlattices Microstruct. 109, 880–885 (2017).

Q. Si, H. Chen, S. Li, S. Lu, and J. Kang, Improved characteristics of AlGaN-based deep ultraviolet light-emitting diodes with superlattice p-type doping. IEEE Photonics J. 9(3), 1–7 (2017).

M. Liu, J. Zhao, S. Zhou, Y. Gao, J. Hu, X. Liu, and X. Ding, An InGaN/GaN Superlattice to Enhance the Performance of Green LEDs: Exploring the Role of V-Pits. Nanomaterials 8(7), 450 (2018).

B. P. Gunning, C. A. M. Fabien, J. J. Merola, E. A. Clinton, W. A. Doolittle, S. Wang, A. M. Fischer, and F. A. Ponce, Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN. J. Appl. Phys. 117(4), 20–22 (2015).

T. C. Zheng, W. Lin, R. Liu, D. J. Cai, J. C. Li, S. P. Li, and J. Y. Kang, Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices. Sci. Rep. 6, 1–10 (2016).

R. K. Mondal, V. Chatterjee, and S. Pal, AlInGaN-based superlattice p-region for improvement of performance of deep UV LEDs. Opt. Mater. (Amst). 104(March), 109846 (2020).

L. Y. Wang, W. D. Song, W. X. Hu, G. Li, X. J. Luo, H. Wang, J. K. Xiao, J. Q. Guo, X. F. Wang, R. Hao, H. X. Yi, Q. B. Wu, and S. T. Li, Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer. Chinese Phys. B 28(1), 0–6 (2019).

Z. Ren, Y. Lu, H. H. Yao, H. Sun, C. H. Liao, J. Dai, C. Chen, J. H. Ryou, J. Yan, J. Wang, J. Li, and X. Li, III-Nitride Deep UV LED Without Electron Blocking Layer. IEEE Photonics J. 11(2) (2019).

Y. Hou, and Z. Guo, Improve the electrical and optical performance of deep ultraviolet light-emitting diodes with a w-shaped p-AlGaN layer. J. Mater. Sci. Mater. Electron. 0(0), 0 (2019).

G. Li, W. Song, H. Wang, X. Luo, X. Luo, and S. Li, Performance improvement of UV light-emitting diodes with triangular quantum barriers. IEEE Photonics Technol. Lett. 30(12), 1071–1074 (2018).

M. Z. Kauser, A. Osinsky, A. M. Dabiran, and P. P. Chow, Enhanced vertical transport in p-type AlGaN/GaN superlattices. Appl. Phys. Lett. 85(22), 5275–5277 (2004).

P. Pampili, and P. J. Parbrook, Doping of III-nitride materials. Mater. Sci. Semicond. Process. 62(August 2016), 180–191 (2017).

E. F. Schubert, Delta-Doping of Semiconductors: Electronic, Optical, and Structural Properties of Materials and Devices, (1994).

S. Yang, J. Yan, M. He, K. Wen, Y. Guo, J. Wang, D. Xiong, and H. Yin, Influence of Silicon-Doping in n-AlGaN Layer on the Optical and Electrical Performance of Deep Ultraviolet Light-Emitting Diodes. Russ. J. Phys. Chem. A 93(13), 2817–2823 (2019).

G. Greco, F. Iucolano, and F. Roccaforte, Ohmic contacts to Gallium Nitride materials. Appl. Surf. Sci. 383, 324–345 (2016).

A. Knauer, T. Kolbe, J. Rass, H. K. Cho, C. Netzel, S. Hagedorn, N. Lobo-Ploch, J. Ruschel, J. Glaab, S. Einfeldt, and M. Weyers, High power uvb light emitting diodes with optimized n-algan contact layers. Jpn. J. Appl. Phys. 58(SC) (2019).

K. Mori, K. Takeda, T. Kusafuka, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Low-ohmic-contact-resistance V-based electrode for n-type AlGaN with high AlN molar fraction. Jpn. J. Appl. Phys. 55(5) (2016).

M. Hiroki, and K. Kumakura, Ohmic contact to AlN:Si using graded AlGaN contact layer. Appl. Phys. Lett. 115(19) (2019).

M. Jo, N. Maeda, and H. Hirayama, Enhanced light extraction in 260nm light-emitting diode with a highly transparent p-AlGaN layer. Appl. Phys. Express 9(1), 7–10 (2016).

G. B. Fayisa, J. W. Lee, J. Kim, Y. Il Kim, Y. Park, and J. K. Kim, Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 56(9) (2017).

X. Chen, K.-Y. Ho, and Y.-R. Wu, Modeling and optimization of p-AlGaN super lattice structure as the p-contact and transparent layer in AlGaN UVLEDs. Opt. Express 23(25), 32367 (2015).

H. K. Cho, I. Ostermay, U. Zeimer, J. Enslin, T. Wernicke, S. Einfeldt, M. Weyers, and M. Kneissl, Highly Reflective p-Contacts Made of Pd-Al on Deep Ultraviolet Light-Emitting Diodes. IEEE Photonics Technol. Lett. 29(24), 2222–2225 (2017).

Zheng-Fei Hu, X.-Y. Li, and Y. Zhang, High Resolution Investigation on the NiAu Ohmic Contact to p-AlGaN|GaN Heterostructure. Phys. Solid State 61(12), 2295–2301 (2019).

Z. F. Hu, X. Y. Li, and Y. Zhang, Characteristics of Ni/Au/Ni/Au ohmic contact in a p-AlGaN/GaN semiconductor. IOP Conf. Ser. Mater. Sci. Eng. 770(1) (2020).

T. Passow, R. Gutt, M. Maier, W. Pletschen, M. Kunzer, R. Schmidt, J. Wiegert, D. Luick, S. Liu, K. Köhler, J. Wagner, and F. A. Festkörperphysik, Ni/Ag as low resistive ohmic contact to p-type AlGaN for UV LEDs., in Light. Diodes Mater. Devices, Appl. Solid State Light. XIV, K. P. Streubel, H. Jeon, L.-W. Tu, and N. Linder, Eds., SPIE, 190–196 (2010).

M. A. Bergmann, J. Enslin, R. Yapparov, F. Hjort, B. Wickman, S. Marcinkevičius, T. Wernicke, M. Kneissl, and Å. Haglund, Electrochemical etching of AlGaN for the realization of thin-film devices. Appl. Phys. Lett. 115(18), 182103 (2019).

S. Yasue, K. Sato, Y. Kawase, J. Ikeda, Y. Sakuragi, S. Iwayama, M. Iwaya, S. Kamiyama, T. Takeuchi, and I. Akasaki, The dependence of AlN molar fraction of AlGaN in wet etching by using tetramethylammonium hydroxide aqueous solution. Jpn. J. Appl. Phys. 58(SC), SCCC30 (2019).

S. Banna, A. Agarwal, G. Cunge, M. Darnon, E. Pargon, and O. Joubert, Pulsed high-density plasmas for advanced dry etching processes. J. Vac. Sci. Technol. A 30(4), 40801 (2012).

Y. J. Sung, M.-S. Kim, H. Kim, S. Choi, Y. H. Kim, M.-H. Jung, R.-J. Choi, Y.-T. Moon, J.-T. Oh, H.-H. Jeong, and G. Y. Yeom, Light extraction enhancement of AlGaN-based vertical type deep-ultraviolet light-emitting-diodes by using highly reflective ITO/Al electrode and surface roughening. Opt. Express 27(21), 29930–29937 (2019).

S. J. Fonash, Chapter Three - Structures, Materials, and Scale., S. J. B. T.-S. C. D. P. (Second E. Fonash, Ed., Academic Press, Boston, 67–120 (2010).

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. L. Thong, Low Resistance Metal Contacts to MoS2 Devices with Nickel-Etched-Graphene Electrodes. ACS Nano 9(1), 869–877 (2015).

N. Maeda, M. Jo, and H. Hirayama, Improving the Efficiency of AlGaN Deep-UV LEDs by Using Highly Reflective Ni/Al p-Type Electrodes. Phys. Status Solidi Appl. Mater. Sci. 215(8), 1–5 (2018).

K. H. Kim, T. H. Lee, K. R. Son, and T. G. Kim, Performance improvements in AlGaN-based ultraviolet light-emitting diodes due to electrical doping effects. Mater. Des. 153, 94–103 (2018).

S.-Y. Lee, D.-S. Han, Y.-G. Lee, K.-K. Choi, J.-T. Oh, H.-H. Jeong, T.-Y. Seong, and H. Amano, Heavy Mg Doping to Form Reliable Rh Reflective Ohmic Contact for 278 nm Deep Ultraviolet AlGaN-Based Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 9(6), 065016 (2020).

J. Lee, T.-Y. Seong, and H. Amano, Oblique-Angle Deposited SiO2/Al Omnidirectional Reflector for Enhancing the Performance of AlGaN-Based Ultraviolet Light-Emitting Diode. ECS J. Solid State Sci. Technol. 9(2), 26005 (2020).

R. K. Mondal, V. Chatterjee, and S. Pal, Efficient Carrier Transport for AlGaN-Based Deep-UV LEDs with Graded Superlattice p-AlGaN. IEEE Trans. Electron Devices 67(4), 1674–1679 (2020).

Downloads

Published

2022-03-01

How to Cite

[1]
H. Solís-Cisneros, “Physical and technological analysis of the AlGaN-based UVC-LED: an extended discussion focused on cubic phase as an alternative for surface disinfection”., Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 020301 1–, Mar. 2022.

Issue

Section

03 Advances in Light Sources