Light refraction in the earth's atmosphere I. Inferior mirages: analytic solution of ray paths

Authors

  • C. Alejandro Paola Univesidad Nacional de La Plata
  • Alicia Cruzado Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata
  • F. M. Carrasco Galleguillos Universidad Nacional de La Plata

DOI:

https://doi.org/10.31349/RevMexFis.68.041301

Keywords:

Planetary atmospheres, light refraction, inferior mirages, analytic expression

Abstract

We aim to reach an analytic expression that describes the path of light rays through the Earth’s atmosphere in the particular situation in which an inferior mirage is occurring. To achieve our goal, we assume an exponential refractive index profile close to the ground, as suggested by empirical and theoretical studies on the state of air when an inferior mirage is taking place. We consider a parallel-plane atmosphere and assume that the laws of geometric optics apply. Since Fermat’s principle holds, we solve the Euler’s equation and, from the solution we obtain an analytic expression that describes the ray paths in a plane perpendicular to the ground. Given that we focus on the particular case of inferior mirages, we were able to find a very simple and easy-to-use expression to describe the ray paths, allowing us to extract additional valuable information with minimal computational effort. We take advantage of it to impose a limit to the thickness of the air layer next to the ground where appropriate conditions exist to bend the rays upwards, and produce an inferior mirage.

References

A. Danjon, Astronomie generale. Astronomie spherique et elements de mecanique celeste, 2nd ed., (J. & R. Sennac editeurs, Paris, 1959) pp. 143.

A. I. Mahan, Astronomical refraction, some history and theories, Appl. Opt. 1 (1962) 497. https://doi.org/10.1086/110225g.1364/AO.1.000497.

B. Garfinkel, Astronomical refraction in a polytrophic atmosphere, Astron. J. 72 (1967) 235, https://doi.org/10.1086/110225.

A. Yu. Yatsenko, Exact theory of astronomical refraction for the real atmosphere, A&AS 111 (1995) 579.

A. T. Young, Understanding astronomical refraction, The Observatory 126 (2006) 82.

T. Corbard, R. Ikhlef, F. Morand, M. Meftah, C. Renaud, On the importance of astronomical refraction for modern solar astrometric measurements, MNRAS 483 (2019) 3865. https://doi.org/10.1093/mnras/sty3391.

J. Evans, M. Rosenquist, F = ma optics, Am. J. Phys. 54 (1985) 876. https://doi.org/10.1119/1.14861.

J. Evans, Simple forms for equations of rays in gradient-index lenses, Am. J. Phys. 58 (1980) 773. https://doi.org/10.1119/1.16357

B. D. Nener, N. Fowkes, and L. Borredon, Analytical models of optical refraction in the troposphere, J. Opt. Soc. Am. A. 20 (2003) 867. https://doi.org/10.1364/JOSAA.20.000867.

N. Fowkes and B. D. Nener, Microwave propagation over the Earth: image inversion, Journal of Engineering Mathematics 53 (2005) 253. https://doi.org/10.1007/s10665-005-9015-0.

M. Berger, T. Trout, and N. Levit, Ray Tracing Mirages, IEEE Computer Graphics and Applications 10 (1990) 36. https://doi.org/10.1109/38.55151.

F. K. Musgrave, A Note on Ray Tracing Mirages, IEEE Computer Graphics and Applications 10 (1990) 10. https://doi.org/10.1109/38.62692.

J. Stam, E. Languenou, Ray Tracing in Non-Constant Media, In Proc. Eurographics Workshop on Rendering (1996) 225. https://doi.org/10.1007/978-3-7091-7484-5-23.

D. Gutierrez, F. J. Seron, A. Munoz and O. Anson, Simulation of atmospheric phenomena, Computers & Graphics 30 (2006) 994. https://doi.org/10.1016/j.cag.2006.05.002.

M. Born, and E. Wolf, Principles of Optics, (Pergamon Pres 1959).

J. D. Jackson, Classical Electrodynamics, (Wiley, New York 1975).

R. Stull, An Introduction to Boundary Layer Meteorology. Kluwer Academic PUblishers. Dordrecht. The Netherlands (1988).

W. G. Kannuluik, and E. H. Carman, The Temperature Dependence of the Thermal Conductivity of Air, Australian J. Sci. Res. 4 (1951) 305. https://doi.org/10.1071/CH9510305.

P. E. Ciddor, Refractive index of air: new equations for the visible and near infrared, Applied Optics 35 (1996) 1566. https://doi.org/10.1364/AO.35.001566.

J. R. Garrat, Extreme Maximun Land Surface Temperatures, Journal of Applied Meteorology 31 (1991) 1096. https://doi.org/10.1175/1520-0450(1992)031(1096:EMLST)2.0.CO;2.

B. G. Heusinkveld, On dew and micrometeorology in an arid coastal ecosystem, (Wageningen University and Research, 2008).

M. Pfeiffer et al., Soil Temperature and Relative Humidity at the Yungay Hiperarid site, Atacama Desert, Chile 2015- 2017. PANGAEA, Data Publisher for Earth & Environmental Science (2021). https://doi.pangaea.de/10.1594/PANGAEA.929564.

Downloads

Published

2022-06-07

How to Cite

[1]
C. Alejandro Paola, A. Cruzado, and F. M. Carrasco Galleguillos, “Light refraction in the earth’s atmosphere I. Inferior mirages: analytic solution of ray paths”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041301 1–, Jun. 2022.