Modos cuasi--normales de un agujero negro de Einstein--Gauss--Bonnet rodeado de quintaesencia: perturbaciones escalares y electromagnéticas

Authors

  • G. Barrientos Universidad Autónoma del Estado de Hidalgo
  • Omar Pedraza Universidad Autónoma del Estado de Hidalgo
  • L. A. López Universidad Autónoma del Estado de Hidalgo
  • R. Arceo Universidad Autónoma de Chiapas

DOI:

https://doi.org/10.31349/RevMexFis.68.050704

Keywords:

Quasi--normal modes, Quintessence, WKB approximation, Lyapunov exponent

Abstract

In this work, we study the quasi-normal modes for scalar and electromagnetic perturbations for an Einstein–Gauss–Bonnet black hole surrounded by quintessence using the third-order WKB method and the Eikonal limit. First, the critical values of the Gauss–Bonnet coupling constant and the normalization factor related to the quintessence are established, to describe the event horizons of the solution. We have studied the condition of extreme horizons and the quasi–normal modes are performed by setting the quintessence state parameter in the particular case of ωq = −2/3

References

S. Iyer. Black-hole normal modes: A wkb approach. ii. schwarzschild black holes. Phys. Rev. D, 35 (1987) 3632.

V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T. Zanchin. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D, 79 (2009) 064016.

S. Fernando and Juan Correa. Quasinormal modes of the bardeen black hole Scalar perturbations. Phys. Rev. D, 86 (2012) 064039.

S. Fernando. Gravitational perturbation and quasi-normal modes of charged black holes in Einstein- Born-Infeld gravity. Gen. Rel. Grav., 37 (2005) 585.

L. Jin, L. Kai, and Y. Nan. Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge. Eur. Phys. J. C, 75 (2015) 131.

S. Devi, R. Roy, and S. Chakrabarti. Quasinormal modes and greybody factors of the novel four dimensional Gauss -Bonnet black holes in asymptotically de Sitter space time scalar, electromagnetic and Dirac perturbations. Eur. Phys. J. C, 80 (2020) 760.

B. Zwiebach. Curvature squared terms and string theories. Physics Letters B, 156 (1985) 315.

A. Sen. Entropy function for heterotic black holes. JHEP, 03 (2006) 008.

F. Moura and Ricardo Schiappa. Higher-derivative corrected black holes Perturbative stability and absorption cross-section in heterotic string theory. Class. Quant. Grav., 24 (2007) 361.

B. Zwiebach. Curvature Squared Terms and String i 156 (1985) 315.

S. Capozziello, V F Cardone, E Piedipalumbo, and C Rubano. Dark energy exponential potential models as curvature quintessence. Classical and Quantum Gravity, 23 (2006) 1205.

S. M. Carroll. Quintessence and the rest of the world Suppressing long-range interactions. Phys. Rev. Lett., 81 (1998) 3067.

C. Armendariz-Picon, Viatcheslav F. Mukhanov, and Paul J. Steinhardt. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett., 85 (2000) 4438.

T. Padmanabhan. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D, 66 (2002) 021301.

M. Gasperini, F. Piazza, and G. Veneziano. Quintessence as a runaway dilaton. Phys. Rev. D, 65 (2002) 023508.

V. V. Kiselev. Quintessence and black holes. Class. Quant. Grav., 20 (2003) 1187.

S. G. Ghosh, M. Amir, and S. D. Maharaj. Quintessence background for 5D Einstein - Gauss -Bonnet black holes. Eur. Phys. J. C, 77 (2017) 530.

S. Chen, B. Wang, and R. Su. Hawking radiation in a ddimensional static spherically symmetric black hole surrounded by quintessence. Phys. Rev. D, 77 (2008) 124011.

K. Ghaderi and B. Malakolkalami. Thermodynamics of the schwarzschild and the Reissner-Nordström black holes with quintessence. Nuclear Physics B, 903 (2016) 10.

B.B. Thomas, M. Saleh, and T. C. Kofane. Thermodynamics and phase transition of the Reissner-Nordström black hole surrounded by quintessence. Gen. Relativ. Gravit., 44 (2012) 2181.

R. Ndongmo, S. Mahamat, T. Bouetou Bouetou, and Timoleon Crepin Kofane. Thermodynamics of a rotating and non-linear magnetic-charged black hole in the quintessence field. Phys. Scripta, 96 (2021) 095001.

M. Saleh, B. B. Thomas, and T. Crepin Kofane. Quasinormal modes of gravitational perturbation around regular Bardeen black hole surrounded by quintessence. Eur. Phys. J. C, 78 (2018) 325.

Z.-W. Feng, G.-P. Li, and X.-T. Zu. Quasinormal Modes of Massless Scalar Field Perturbation in Reissner-Nördstrom-de Sitter Quintessence Spacetime. Int. J. Theor. Phys., 55 (2016) 367.

J. M. Toledo and V. B. Bezerra. The Reissner -Nordström black hole surrounded by quintessence and a cloud of strings Thermodynamics and quasinormal modes. Int. J. Mod. Phys. D, 28 (2018) 1950023.

C.-Y. Wang, Y. Zhang, Y.-X. Gui, and J.- B. Lu. Dirac quasinormal modes of Reissner-Nordstrom black hole surrounded by quintessence. Commun. Theor. Phys., 53 (2010) 882.

K. Ghaderi. Geodesics of black holes with dark energy. Astrophys. Space Sci., 362 (2017) 218.

S. Fernando. Schwarzschild black hole surrounded by quintessence Null geodesics. Gen. Rel. Grav., 44 (2012) 1857.

B. Malakolkalami and K. Ghaderi. The null geodesics of the Reissner -Nordström black hole surrounded by quintessence. Mod. Phys. Lett. A, 30 (2015) 1550049. 29. H. Shah, Z. Ahmad, and H. Hussain Shah. Quintessence background for 4d Einstein-Gauss-bonnet black holes. Physics Letters B, 818 (2021) 136383.

M. Rizwan, M. Jamil, and A. Wang. Distinguishing a rotating Kiselev black hole from a naked singularity using the spin precession of a test gyroscope. Phys. Rev. D, 98 (2018) 024015; [Erratum Phys.Rev.D 100 (2019) 029902].

A. J. M. Medved, Damien Martin, and Matt Visser. Dirty black holes Symmetries at stationary nonstatic horizons. Phys. Rev. D 70 (2004) 024009.

H. Nomura and T. Tamaki. Continuous area spectrum in regular black hole. Phys. Rev. D, 71 (2005) 124033.

J. Li and Y. Zhong. Quasinormal Modes for Electromagnetic Field Perturbation of the Asymptotic Safe Black. Int. J. Theor. Phys., 52 (2013) 1538.

S. Iyer and C. M. Will. Black Hole Normal Modes A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. D, 35 (1987) 3621.

V. Cardoso, J. P. S. Lemos, and S. Yoshida, Quasinormal modes and stability of the rotating acoustic black hole Numerical analysis. Phys. Rev. D 70 (2004) 124032.

S. R. Dolan. Quasinormal mode spectrum of a kerr black hole in the eikonal limit. Phys. Rev. D, 82 (2010) 104003.

S. Hod. Black-hole quasinormal resonances Wave analysis versus a geometric-optics approximation. Phys. Rev. D 80 (2009) 064004.

J. Morgan, V. Cardoso, A. S. Miranda, C. Molina, and V. T. Zanchin. Quasinormal modes of black holes in anti-de sitter space A numerical study of the eikonal limit. Phys. Rev. D, 80 (2009) 024024.

M. Mondal, P. Pradhan, F. Rahaman, and I. Karar. Geodesic stability and quasi normal modes via lyapunov exponent for hayward black hole. Modern Physics Letters A, 35 (2020) 2050249.

H. Kodama and A. Ishibashi. Master equations for perturbations of generalized static black holes with charge in higher dimensions. Prog. Theor. Phys., 111 (2004) 29.

N. Breton and L. A. López. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics. Phys. Rev. D, 94 (2016) 104008.

M. Novello, V. A. De Lorenci, J. M. Salim, and R. Klippert. Geometrical aspects of light propagation in nonlinear electrodynamics. Phys. Rev. D, 61 (2000) 045001.

N. Breton, T. Clark, and S. Fernando. Quasinormal modes and absorption cross-sections of Born -Infeld -de Sitter black holes. Int. J. Mod. Phys. D, 26 (2017) 1750112.

E. Chaverra, J. C. Degollado, Claudia Moreno, and O. Sarbach. Black holes in nonlinear electrodynamics: Quasinormal spectra and parity splitting. Phys. Rev. D, 93 (2016) 123013.

Downloads

Published

2022-08-16

How to Cite

[1]
G. Barrientos, O. Pedraza, L. A. López, and R. Arceo, “Modos cuasi--normales de un agujero negro de Einstein--Gauss--Bonnet rodeado de quintaesencia: perturbaciones escalares y electromagnéticas”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050704 1–, Aug. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory