An empirical model for the Backscattering coefficient of 1-30 keV electrons from thin film targets


  • Abderrahim Betka Physics Depatement, Science faculty, Setif1 university, Algeria
  • B. Bentabet Université Bordj Bou-Arreridj
  • A. Bouzid University Mostefa Benboulaid-Batna 2
  • F. Djeffal Université de Bordj-Bou-Arreridj
  • H. Ferhati University Mostefa Benboulaid-Batna 2
  • A. Azbouche Centre de Recherche Nucleaire d’Alger (CNRA)



Monte-Carlo Calculation, backscattering coefficient, semi-infinite solid target, thin-films


In this paper, the electron backscattering coefficient for normally incident beams with energy up to 30 keV impinging on thin film targets is stochastically modeled using a Monte Carlo simulation.Accordingly, a generalized model describing the realisticbackscattering behaviortaking into account both the atomic number and the thickness for energy up to 30keV is proposed. The obtained results are compared to the experimental and theoretical data, where an excellent agreement is achieved. Moreover, the usefulness of the proposed model as a probe for investigating the electrons backscattered behavior of several materials is thoroughly discussed. It is revealed that the developedmodel allowsidentifying the critical thickness of thin film exhibiting the same electron backscattering behavior as that of a semi-infinite solid, which contributes to an accurate assessment of surface properties of various thin-films.The use of our empirical model enables reducing the simulation time as compared to that of complicated Monte Carlo time consuming simulation.Therefore, the presented model can be implemented to accurately determinatethe electron backscattering coefficient of various thin-film materials with dissimilar thicknesses, making it appropriate for surface analysis applications.


W.S.M. Werner, Electron transport in solids for quantitative surface analysis, Surf. Interface Anal. 31 (2001) 141.

M. Dapor, Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering Problems, Springer, Berlin, (2003).

R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Defect Studies, Springer, Berlin, (1999).

A.H. Weiss, P.G. Coleman, in: P.G. Coleman (Ed.), Positron Beams and Their Applications, Amsterdam, World Scientific, (2000) p. 129.

T. E. Everhart, Simple theory concerning the reflection of electrons from solids, J. Appl. Phys. 31 (1960) 1483

G. D. Archard, Back Scattering of Electrons, Journal of Applied Physics, 32 (1961) 1505.

M. Dapor, Theory of the interaction between an electron beam and a thin solid film, Surf. Sci. 269 (1992) 753.

M.Vicanek, H.M. Urbassek, Reflection coefficient of lowenergy light ions, Phys. Rev. B 44 (1991) 7234.

H. J. August and J. Wernisch, Analytical Expressions for the Electron Backscattering Coefficient, Phys. Status Solidi 114 (1989) 629.

V. E. Cosslett and R. N. Thomas, Multiple scattering of 5-30 keV electrons in evaporated metal films: I. Total transmission and angular distribution, Brit. J. Appl. Phys. 15 (1964a) 883

D. Liljequist, J. Appl. Phys 65 (1989) 2431

A.M.D. Assa’d and M.M. El Gomati, Backscattering coefficients for low energy electrons, Scanning Microscopy 12 (1998) 185.

F. Salvat, J.M. Fernandez-Varea, E. Acosta, J. Simpau, PENELOPE - A Code system for Monte Carlo Simulation of Electron and Photon Transport, NuclearEnergy Agency OECD/NEA, Issy-les-Moulineaux, France, (2003).

Z. Chaoui, N. Bouarissa, Implantation profiles for low energy electrons in metals: scaling properties, Appl. Surf. Sci. 221 (2004) 114.

A. Bentabet, N. Bouarissa, Dependence of electron and positron backscattering coefficients on Al film thickness, Applied Surface Science 253 (2007) 8725-8728.

A. Bentabet, Range and stopping power energy relationships for 0.5-30 keV electron beams slowing down in solids: analytical model, Modern Physics Letters B, 28 (2014) 1450006.

A. Bentabet, N.E. Fenineche, K. Loucif, A comparative study between slow electrons and positrons transport in solid thin films, Applied Surface Science 255 (2009) 7580.

H. Lanteri, R. Bindi, P. Rostaing, Theoretical model for the transmission and backscattering of electrons in thin or semiinfinite metallic targets: application to Aluminium, Silver and Copper, Thin Solid Films 88 (1982) 309.

M. Dapor, Monte Carlo simulation of backscattered electrons and energy from thick targets and surface films, Phys. Rev. B 42 (1992) 618.

M. Dapor, Comparison of the results of analytical and numerical model calculations of electron backscattering from supported films, Eur. Phys. J. Appl. Phys. 18 (2002) 155.

A. Bentabet , N.E. Fenineche, Backscattering coefficients for low energy electrons and positrons impinging on metallic thin films: scaling study, Appl. Phys A 97 (2009) 425-430.

B. Deghfel, A. Bentabet, and N. Bouarissa, Transmission and backscattering energy distributions of slow electrons from metallic targets, phys. stat. sol. (b) 238 (2003) 136.

K. L. Hunter, IK.Snook, HK.Wagenfeld, Monte Carlo study of electron transmission and backscattering from metallic thin films, Phys Rev B 54 (1996) 4507.

J.Sempau, JM.Fernandez-Varea, E. Acosta, F.Salvat, Experimental benchmarks of the Monte Carlo code PENELOPE, NuclInstr Meth Phys Res B 207 (2003) 107.

A. Miotello, M.Dapor, Slow electrons impinging on dielectric solids. II. Implantation profiles, electron mobility, and recombination processes, Phys Rev B 56 (1997) 2241.

A. Bentabet, Z. Chaoui, A. Aydin , A. Azbouche, Analytical differential cross section of electron elastically scattered by solid targets in the energy range up to 100 keV, Vacuum 85 (2010) 156.

Zommer L, Jablonski A, Gergely G, Gurban S, Monte Carlo backscattering yield (BY) calculations applying continuous slowing down approximation (CSDA) and experimental data, Vacuum 82 (2007) 201.




How to Cite

A. Betka, B. Bentabet, A. Bouzid, F. Djeffal, H. Ferhati, and A. Azbouche, “An empirical model for the Backscattering coefficient of 1-30 keV electrons from thin film targets”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041001 1–, Jun. 2022.