Relativistic hyperbolic motion and its higher order kinematic quantities
DOI:
https://doi.org/10.31349/RevMexFis.68.060702Keywords:
jerk, hyperbolic motion, snap, Minkowski spacetime, modified Rindler hyperbolasAbstract
We investigate the kinematics of the motion of an observer with constant proper acceleration (relativistic hyperbolic motion) in 1+1 and 1+3 dimensional Minkowski spacetimes. We provide explicit formulas for all the kinematic quantities up to the fourth proper time derivative (the Snap). In the 1 + 3 case, following a recent work of Pons and de Palol [Gen. Rel. Grav. 51 (2019) 80], a vectorial differential equation for the acceleration is obtained which by considering constant proper acceleration is turned into a nonlinear second order differential equation in terms of derivatives of the radius vector. If, furthermore, the velocity is parameterized in terms of hyperbolic functions, one obtains a differential equation to solve for the argument f(s) of the velocity. Differently from Pons and de Palol, who employed the particular solution, linear in the proper time s, we obtain the general solution and use it to work out more general expressions for the kinematical quantities. As a byproduct, we obtain a class of modified Rindler hyperbolic worldlines characterized by supplementary contributions to the components of the kinematical quantities.
References
W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870-892. https://doi:10.1103/PhysRevD.14.870.
L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787-838.
https://doi:10.1103/RevModPhys.80.787.
J. G. Russo and P. K. Townsend, Relativistic kinematics and stationary motions, J. Phys. A 42 (2009) 445402. https://doi.org/10.1088/1751-8113/42/44/445402.
J. R. Letaw, Vacuum excitation of noninertial detectors on stationary world lines, Phys. Rev. D 23 (1981) 1709-1714. https://doi:10.1103/PhysRevD.23.1709.
Y. Friedman and T. Scarr, Uniform acceleration in general relativity, Gen. Rel. Grav. 47 (2015) 121. https://doi:10.1007/s10714-015-1966-5.
K. Paithankar and S. Kolekar, Bound on Rindler trajectories in a black hole spacetime, Phys. Rev. D 99 (2019) 064012. https://doi.org/10.1103/PhysRevD.99.064012.
M. Born, The theory of the rigid electron in the kinematics of the principle of relativity, Ann. Phys.(Leipzig) 335 (1909) 1-56. https://doi.org/10.1002/andp.19093351102.
J. M. Pons and F. de Palol, Observers with constant proper acceleration, constant proper jerk, and beyond, Gen. Rel. Grav. 51 (2019) 80. https://doi.org/10.1007/s10714-019-2562-x.
J. F. Barrett, The hyperbolic theory of special relativity, arXiv:1102.0462v2 (2019) 109 pages. https://doi.org/10.48550/arXiv.1102.0462.
E. Flores-Garduno, S.C. Mancas, H.C. Rosu, M. Pérez-Maldonado, Planar motion with Fresnel integrals as components of the velocity, Rev. Mex. F´ıs. 66 (2020) 585-588. https://doi.org/10.31349/RevMexFis.66.585.
H. Hu, Perturbation method for periodic solutions of nonlinear jerk equations, Phys. Lett. A 372 (2008) 1405-1409. https://doi.org/10.1016/j.physleta.2008.03.027.
R. Eichhorn, S. J. Linz, and P. Hanggi, Transformations of non-linear dynamical systems to jerky motion and its application
to minimal chaotic flows, Phys. Rev. E 58 (1998) 7151-7164. https://doi.org/10.1103/PhysRevE.58.7151.
M. te Vrugt, J. Jeggle, and R. Wittkowski, Jerky active matter: a phase field crystal model with translational and orientational memory, New J. Phys. 23 (2021) 063023 (2021). https://doi.org/10.1088/1367-2630/abfa61.
J. Bloxham, S. Zatman, and M. Dumberry, The origin of geomagnetic jerks, Nature 420 (2002) 65-68. https://doi.org/10.1038/nature01134.
J. Sprott, Some simple chaotic jerk functions, Am. J. Phys. 65 (1997) 537-543. https://doi.org/10.1119/1.18585.
E. Poisson, An introduction to the Lorentz-Dirac equation, arXiv:gr-qc/9912045 (1999) 14 pages. https://doi.org/10.48550/arXiv.gr-qc/9912045.
G. D. Leutcho and J. Kengne, A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors, Chaos, Solitons & Fractals 113 (2018) 275-293. https://doi.org/10.1016/j.chaos.2018.05.017.
W. Rindler, Kruskal space and the uniformly accelerated frame,
Am. J. Phys. 34 (1966) 1174-1178. https://doi.org/10.1119/1.1972547.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ivan de Jesus Perez Roman, Haret-Codratian Rosu Barbus
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.