Relativistic hyperbolic motion and its higher order kinematic quantities

Authors

  • Ivan de Jesus Perez Roman
  • Haret-Codratian Rosu Barbus Instituto Potosino de Investigación Científica y Tecnológica, A.C.

DOI:

https://doi.org/10.31349/RevMexFis.68.060702

Keywords:

jerk, hyperbolic motion, snap, Minkowski spacetime, modified Rindler hyperbolas

Abstract

We investigate the kinematics of the motion of an observer with constant proper acceleration (relativistic hyperbolic motion) in 1+1 and 1+3 dimensional Minkowski spacetimes. We provide explicit formulas for all the kinematic quantities up to the fourth proper time derivative (the Snap). In the 1 + 3 case, following a recent work of Pons and de Palol [Gen. Rel. Grav. 51 (2019) 80], a vectorial differential equation for the acceleration is obtained which by considering constant proper acceleration is turned into a nonlinear second order differential equation in terms of derivatives of the radius vector. If, furthermore, the velocity is parameterized in terms of hyperbolic functions, one obtains a differential equation to solve for the argument f(s) of the velocity. Differently from Pons and de Palol, who employed the particular solution, linear in the proper time s, we obtain the general solution and use it to work out more general expressions for the kinematical quantities. As a byproduct, we obtain a class of modified Rindler hyperbolic worldlines characterized by supplementary contributions to the components of the kinematical quantities.

References

W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870-892. https://doi:10.1103/PhysRevD.14.870.

L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787-838.

https://doi:10.1103/RevModPhys.80.787.

J. G. Russo and P. K. Townsend, Relativistic kinematics and stationary motions, J. Phys. A 42 (2009) 445402. https://doi.org/10.1088/1751-8113/42/44/445402.

J. R. Letaw, Vacuum excitation of noninertial detectors on stationary world lines, Phys. Rev. D 23 (1981) 1709-1714. https://doi:10.1103/PhysRevD.23.1709.

Y. Friedman and T. Scarr, Uniform acceleration in general relativity, Gen. Rel. Grav. 47 (2015) 121. https://doi:10.1007/s10714-015-1966-5.

K. Paithankar and S. Kolekar, Bound on Rindler trajectories in a black hole spacetime, Phys. Rev. D 99 (2019) 064012. https://doi.org/10.1103/PhysRevD.99.064012.

M. Born, The theory of the rigid electron in the kinematics of the principle of relativity, Ann. Phys.(Leipzig) 335 (1909) 1-56. https://doi.org/10.1002/andp.19093351102.

J. M. Pons and F. de Palol, Observers with constant proper acceleration, constant proper jerk, and beyond, Gen. Rel. Grav. 51 (2019) 80. https://doi.org/10.1007/s10714-019-2562-x.

J. F. Barrett, The hyperbolic theory of special relativity, arXiv:1102.0462v2 (2019) 109 pages. https://doi.org/10.48550/arXiv.1102.0462.

E. Flores-Garduno, S.C. Mancas, H.C. Rosu, M. Pérez-Maldonado, Planar motion with Fresnel integrals as components of the velocity, Rev. Mex. F´ıs. 66 (2020) 585-588. https://doi.org/10.31349/RevMexFis.66.585.

H. Hu, Perturbation method for periodic solutions of nonlinear jerk equations, Phys. Lett. A 372 (2008) 1405-1409. https://doi.org/10.1016/j.physleta.2008.03.027.

R. Eichhorn, S. J. Linz, and P. Hanggi, Transformations of non-linear dynamical systems to jerky motion and its application

to minimal chaotic flows, Phys. Rev. E 58 (1998) 7151-7164. https://doi.org/10.1103/PhysRevE.58.7151.

M. te Vrugt, J. Jeggle, and R. Wittkowski, Jerky active matter: a phase field crystal model with translational and orientational memory, New J. Phys. 23 (2021) 063023 (2021). https://doi.org/10.1088/1367-2630/abfa61.

J. Bloxham, S. Zatman, and M. Dumberry, The origin of geomagnetic jerks, Nature 420 (2002) 65-68. https://doi.org/10.1038/nature01134.

J. Sprott, Some simple chaotic jerk functions, Am. J. Phys. 65 (1997) 537-543. https://doi.org/10.1119/1.18585.

E. Poisson, An introduction to the Lorentz-Dirac equation, arXiv:gr-qc/9912045 (1999) 14 pages. https://doi.org/10.48550/arXiv.gr-qc/9912045.

G. D. Leutcho and J. Kengne, A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors, Chaos, Solitons & Fractals 113 (2018) 275-293. https://doi.org/10.1016/j.chaos.2018.05.017.

W. Rindler, Kruskal space and the uniformly accelerated frame,

Am. J. Phys. 34 (1966) 1174-1178. https://doi.org/10.1119/1.1972547.

Downloads

Published

2022-11-01

How to Cite

[1]
I. de J. Perez Roman and H.-C. Rosu Barbus, “Relativistic hyperbolic motion and its higher order kinematic quantities”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 060702 1–, Nov. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory