A non-renormalizable neutrino mass model with S3 ⊗ Z2 symmetry


  • José García CECyT No. 16, Instituto Politécnico Nacional
  • Juan Carlos Gómez Izquierdo CECyT No. 16, Instituto Politécnico Nacional




Neutrino mass and mixing, flavor symmetries


The lepton sector is studied within a flavored non-renormalizable model where the S3 ⊗ Z2 flavor symmetry controls the masses and mixings. In this work, the effective neutrino as well as the charged lepton mass matrices are hierarchical and these have (under a benchmark in the charged sector) a kind of Fritzsch textures that accommodate the mixing angles in good agreement with the last experimental data. The model favors the normal hierarchy, this also predicts consistent values for the CP-violating phase and the |mee| effective Majorana neutrino mass rate. Along with this, the branching ratio for the lepton flavor violation process, µ → eγ, is below the current bound.


A. Masiero, S. K. Vempati and O. Vives, Flavour physics and grand unification, arXiv:0711.2903[hep-ph].

G. C. Branco, L. Lavoura and F. Mota, Nearest Neighbor Interactions and the Physical Content of Fritzsch Mass Matrices, Phys. Rev. D 39 (1989) 3443, https://doi.org/10.1103/PhysRevD.39.3443.

G. C. Branco and J. I. Silva-Marcos, NonHermitian Yukawa couplings, Phys. Lett. B 331 (1994) 390-394, https://doi.org/10.1016/0370-2693(94)91069-3.

K. Harayama and N. Okamura, Exact parametrization of the mass matrices and the KM matrix, Phys. Lett. B 387 (1996) 614-622, https://doi.org/10.1016/0370-2693(96)01079-9.

K. Harayama, N. Okamura, A. I. Sanda and Z. Z. Xing, Getting at the quark mass matrices, Prog. Theor. Phys. 97 (1997) 781-790, https://doi.org/10.1143/PTP.97.781.

H. Fritzsch, Neutrino Masses and Flavor Mixing, Mod. Phys. Lett. A 30 (2015) 16 1530012, https://doi.org/10.1142/S0217732315300128.

Z. z. Xing and Z. h. Zhao, A review of µ-τ flavor symmetry in neutrino physics, Rept. Prog. Phys. 79 (2016) 7 076201, https://doi.org/10.1088/0034-4885/79/7/076201.

C. C. Nishi and B. L. Sanchez-Vega, Mu-tau reflection symmetry with a texture-zero, JHEP 01 (2017) 068, https://doi.org/10.1007/JHEP01(2017)068.

P. Chen, G. J. Ding, F. González-Canales and J. W. F. Valle, Classifying CP transformations according to their texture zeros: theory and implications, Phys. Rev. D 94 (2016) 3 033002, https://doi.org/10.1103/PhysRevD.94.033002.

P. Chen, G. J. Ding, F. González-Canales and J. W. F. Valle, Generalized µ − τ reflection symmetry and leptonic CP violation, Phys. Lett. B 753 (2016) 644-652, https://doi.org/10.1016/j.physletb.2015.12.069.

Z. h. Zhao, Breakings of the neutrino µ − τ reflection symmetry, JHEP 09 (2017) 023, https://doi.org/10.1007/JHEP09(2017)023.

Z. C. Liu, C. X. Yue and Z. h. Zhao, Neutrino µ − τ reflection symmetry and its breaking in the minimal seesaw, JHEP 10 (2017) 102, https://doi.org/10.1007/JHEP10(2017)102.

N. Nath, Z. z. Xing and J. Zhang, µ − τ Reflection Symmetry Embedded in Minimal Seesaw, Eur. Phys. J. C 78 (2018) 4 289, https://doi.org/10.1140/epjc/s10052-018-5751-y.

P. F. Harrison, D. H. Perkins and W. G. Scott, Tribimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167, https://doi.org/10.1016/S0370-2693(02)01336-9.

Z. z. Xing, Nearly tri bimaximal neutrino mixing and CP violation, Phys. Lett. B 533 (2002) 85-93, https://doi.org/10.1016/S0370-2693(02)01649-0.

G. Altarelli, F. Feruglio and L. Merlo, Tri-Bimaximal Neutrino Mixing and Discrete Flavour Symmetries, Fortsch. Phys. 61 (2013) 507-534, https://doi.org/10.1002/prop.201200117.

M. H. Rahat, P. Ramond and B. Xu, Asymmetric tribimaximal texture, Phys. Rev. D 98 (2018) 5 055030, https://doi.org/10.1103/PhysRevD.98.055030.

M. J. Pérez, M. H. Rahat, P. Ramond, A. J. Stuart and B. Xu, Stitching an asymmetric texture with T13 × Z5 family symmetry, Phys. Rev. D 100 (2019) 7 075008, https://doi.org/10.1103/PhysRevD.100.075008.

M. H. Rahat, Leptogenesis from the Asymmetric Texture, Phys. Rev. D 103 (2021) 035011, https://doi.org/10.1103/PhysRevD.103.035011.

P. M. Ferreira, W. Grimus, D. Jurciukonis and L. Lavoura, Scotogenic model for co-bimaximal mixing, JHEP 07 (2016) 010, https://doi.org/10.1007/JHEP07(2016)010.

E. Ma, Soft A4 → Z3 symmetry breaking and cobimaximal neutrino mixing, Phys. Lett. B 755 (2016) 348-350, https://doi.org/10.1016/j.physletb.2016.02.032.

E. Ma and G. Rajasekaran, Cobimaximal neutrino mixing from A4 and its possible deviation, EPL 119 (2017) 3 31001, https://doi.org/10.1209/0295-5075/119/31001.

E. Ma, Cobimaximal neutrino mixing from S3×Z2, Phys. Lett. B 777 (2018) 332-334, https://doi.org/10.1016/j.physletb.2017.12.049.

W. Grimus and L. Lavoura, Cobimaximal lepton mixing from soft symmetry breaking, Phys. Lett. B 774 (2017) 325-331, https://doi.org/10.1016/j.physletb.2017.09.082.

A. E. Cárcamo Hernández and I. de Medeiros Varzielas, ∆(27) framework for cobimaximal neutrino mixing models, Phys. Lett. B 806 (2020) 135491, https://doi.org/10.1016/j.physletb.2020.135491.

H. Fritzsch, Texture zero mass matrices and flavor mixing of quarks and leptons, Mod. Phys. Lett. A 30 (2015) 28 1550138, https://doi.org/10.1142/S0217732315501382.

H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1-163, https://doi.org/10.1143/PTPS.183.1.

W. Grimus and P. O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001, https://doi.org/10.1088/1751-8113/45/23/233001.

H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An introduction to non-Abelian discrete symmetries for particle physicists, Lect. Notes Phys. 858 (2012) 1-227, https://doi.org/10.1007/978-3-642-30805-5

S. F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201, https://doi.org/10.1088/0034-4885/76/5/056201.

A. E. Cárcamo Hernández, I. de Medeiros Varzielas and E. Schumacher, Fermion and scalar phenomenology of a twoHiggs-doublet model with S3, Phys. Rev. D 93 (2016) 1 016003, https://doi.org/10.1103/PhysRevD.93.016003

A. E. Cárcamo Hernández, R. Martinez and F. Ochoa, Fermion ´ masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S3 flavor symmetry, Eur. Phys. J. C 76 (2016) 11 634, https://doi.org/10.1140/epjc/s10052-016-4480-3.

D. Das and U. K. Dey, Analysis of an extended scalar sector with S3 symmetry, Phys. Rev. D 89 (2014) no.9, 095025 [erratum: Phys. Rev. D 91 (2015) 3 039905], https://doi.org/10.1103/PhysRevD.89.095025.

D. Das, U. K. Dey and P. B. Pal, S3 symmetry and the quark mixing matrix, Phys. Lett. B 753 (2016) 315-318, https://doi.org/10.1016/j.physletb.2015.12.038.

S. Pramanick and A. Raychaudhuri, Neutrino mass model with S3 symmetry and seesaw interplay, Phys. Rev. D 94 (2016) 11 115028, https://doi.org/10.1103/PhysRevD.94.115028.

D. Das, U. K. Dey and P. B. Pal, Quark mixing in an S3 symmetric model with two Higgs doublets, Phys. Rev. D 96 (2017) 3 031701, https://doi.org/10.1103/PhysRevD.96.031701.

J. C. Gómez-Izquierdo, Non-minimal flavored ´ S3 ⊗ Z2 left–right symmetric model, Eur. Phys. J. C 77 (2017) 8 551, https://doi.org/10.1140/epjc/s10052-017-5094-0.

E. A. Garces, J. C. Gómez-Izquierdo and F. González-Canales, Flavored non-minimal left-right symmetric model fermion masses and mixings, Eur. Phys. J. C 78 (2018) 10 812, https://doi.org/10.1140/epjc/s10052-018-6271-5.

J. C. Gómez-Izquierdo and M. Mondragón, B–L Model with S3 symmetry: Nearest Neighbor Interaction Textures and Broken µ ↔ τ Symmetry, Eur. Phys. J. C 79 (2019) 3 285, https://doi.org/10.1140/epjc/s10052-019-6785-5

D. Das and P. B. Pal, S3 flavored left-right symmetric model of quarks, Phys. Rev. D 98 (2018) 11 115001, https://doi.org/10.1103/PhysRevD.98.115001.

Z. Z. Xing and D. Zhang, Seesaw mirroring between light and heavy Majorana neutrinos with the help of the S3 reflection symmetry, JHEP 03 (2019) 184, https://doi.org/10.1007/JHEP03(2019)184.

S. Pramanick, Scotogenic S3 symmetric generation of realistic neutrino mixing, Phys. Rev. D 100 (2019) 3 035009, https://doi.org/10.1103/PhysRevD.100.035009.

A. Kunčinas, O. M. Ogreid, P. Osland and M. N. Rebelo, S3-inspired three-Higgs-doublet models: A class with a complex vacuum, Phys. Rev. D 101 (2020) 7 075052, https://doi.org/10.1103/PhysRevD.101.075052.

V. V. Vien, H. N. Long and A. E. Cárcamo Hernández, U(1)B−L extension of the standard model with S3 symmetry, Eur. Phys. J. C 80 (2020) 8 725, https://doi.org/10.1140/epjc/s10052-020-8318-7

C. Espinoza, E. A. Garces, M. Mondragón and H. Reyes-González, The S3 Symmetric Model with a Dark Scalar, Phys. Lett. B 788 (2019) 185-191, https://doi.org/10.1016/j.physletb.2018.11.028

C. Espinoza and M. Mondragón, Prospects of Indirect Detection for the Heavy S3 Dark Doublet, arXiv:2008.11792[hepph].

V. V. Vien, 3+ 1 active–sterile neutrino mixing in B −L model with S3×Z4 × Z2 symmetry for normal neutrino mass ordering, Eur. Phys. J. C 81 (2021) 5 416, https://doi.org/10.1140/epjc/s10052-021-09214-5

M. Gómez-Bock, M. Mondragón and A. Pérez-Martínez, Scalar and gauge sectors in the 3-Higgs Doublet Model under the S3 symmetry, Eur. Phys. J. C 81 (2021) 10 942, https://doi.org/10.1140/epjc/s10052-021-09731-3.

D. Meloni, S. Morisi and E. Peinado, Fritzsch neutrino mass matrix from S3 symmetry, J. Phys. G 38 (2011) 015003, https://doi.org/10.1088/0954-3899/38/1/015003.

A. G. Dias, A. C. B. Machado and C. C. Nishi, An S3 Model for Lepton Mass Matrices with Nearly Minimal Texture, Phys. Rev. D 86 (2012) 093005, https://doi.org/10.1103/PhysRevD.86.093005

P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Mirave, O. Mena, C. A. Ternes, M. Tortola and J. W. F. Valle, 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071, https://doi.org/10.1007/JHEP02(2021)071.

P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) 8 083C01, https://doi.org/10.1093/ptep/ptaa104

M. Agostini et al. [GERDA], Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 12 122503, https://doi.org/10.1103/PhysRevLett.111.122503.

M. Agostini, M. Allardt, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov and S. T. Belyaev, et al., Background-free search for neutrinoless double-β decay of 76Ge with GERDA, Nature 544 (2017) 47, https://doi.org/10.1038/nature21717.

A. G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays tau —> anti-l ll and mu —> e gamma in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010, https://doi.org/10.1103/PhysRevD.79.113010.

M. Lindner, M. Platscher and F. S. Queiroz, A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1-82, https://doi.org/10.1016/j.physrep.2017.12.001.

A. E. Cárcamo Hernández, J. C. Gómez-Izquierdo, S. Kovalenko and M. Mondragó, ∆ (27) flavor singlet-triplet Higgs model for fermion masses and mixings, Nucl. Phys. B 946 (2019) 114688, https://doi.org/10.1016/j.nuclphysb.2019.114688.




How to Cite

J. García and J. C. Gómez Izquierdo, “A non-renormalizable neutrino mass model with S3 ⊗ Z2 symmetry”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040801 1–, Jun. 2022.