The Impact of deformed space-phase parameters into HAs and HLM systems with the improved Hulthen plus Hellmann potentials model in the presence of temperature-dependent confined Coulomb potential within the framework of DSE

Authors

  • Abdelmadjid Maireche University of M'sila- Algeria

DOI:

https://doi.org/10.31349/RevMexFis.68.050702

Keywords:

Schrödinger equation. Hulthen plus Hellmann potentials model. Noncommutative quantum mechanics. Star product. Generalized Bopp's shift method.

Abstract

In this work, the improved Hulthen plus Hellmann potentials model in the presence of temperature-dependent confined Coulomb potential ´ IHHPTd model is adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons in the three-dimensional nonrelativistic quantum mechanics noncommutative phase space (3DNRQm-NCSP) symmetries. In addition, we found another application for this potential through its description for hydrogen atoms He+, Li+2 and Be+. We solved the deformed Schrödinger equation analytically using the generalized Bopp’s shift method and standard perturbation theory. The new energy eigenvalues E (u,d)hy nc−n and (E hlm n−g, E hlm n−mand E hlm n−l ) for hydrogen atoms and heavy mesons such as charmonium cc and bottomonium cb and corresponding deformed Hamiltonian operators H nc hhp(r, Θ, θ, λ, λ, σ, σ, ²) and H nc hhp(r, Θ, θ, λ, λ, σ, σ, gs) were obtained, respectively. The present results are applied for calculating the new mass of heavy mesons. Four special cases were considered when some of the improved potential parameters were set to zero, resulting into improved Hellmann potential, improved Yukawa potential, improved Coulomb potential, and improved Hulthen potential, in ´ (3DNRQm-NCSP) symmetries. The limiting cases are analyzed for Θ, σ and χ −→ 0 are compared with those of literature.

Author Biography

Abdelmadjid Maireche, University of M'sila- Algeria

BP 239 CHEBILIA MSILA 28000 ALGERIA

References

: S.M. Ikhdair, Relativistic Bound States of Spinless Particle by the Cornell Potential Model in External Fields, Adv. High Energy Phys. 2013 (2013) 491648. https://doi.org/10.1155/2013/491648

: E.P. Inyang, E.S. William and J.A. Obu, Eigensolutions of the N-dimensional Schrodinger equation interacting with Varshni-Hulthén potential model, Rev. Mex. Fis. 67(2) (2021) 193-205. https://doi.org/10.31349/RevMexFis.67.193

: E.S. William, E.P. Inyang and E.A. Thompson, Arbitrary l-solutions of the Schrodinger equation interacting with Hulthén-Hellmann potential model, Rev. Mex. Fis. 66 (6) (2021) 730-741. https://doi.org/10.31349/RevMexFis.66.730

: C.O. Edet, P.O. Okoi, A.S. Yusuf and P.O. Amadi, Bound state solutions of the generalized shifted Hulthén potential,. Indian J Phys 95 (2021) 471-480. https://doi.org/10.1007/s12648-019-01650-0

: C.O. Edet, P.O. Amadi, M.C. Onyeaju, U.S. Okorie, R. Sever, G.J. Rampho Hewa, Y. Abdullah, I.H. Salih, A.N. Ikot, Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov-Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures, J Low Temp Phys 202 (2021) 83-105. https://doi.org/10.1007/s10909-020-02533-z

: C.O. Edetaand P.O. Okoi, Any l-state solutions of the Schrodinger equation for q-deformed Hulthén plus generalized inverse quadratic Yukawa potential in arbitrary dimensions, Rev. Mex. Fis. 65 (2019) 333-344. https://doi.org/10.31349/RevMexFis.65.333

: C.O. Edet, K.O. Okorie, H. Louis and N.A. Nzeata-Ibe, Any l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential model, Indian J Phys 94 (2020) 243-251. https://doi.org/10.1007/s12648-019-01467-x

: A. Al-Jamel and H. Widyan, Heavy Quarkonium Mass Spectra in A Coulomb Field Plus Quadratic Potential Using Nikiforov-Uvarov Method, Applied Physics Research 4(3) (2012). http://dx.doi.org/10.5539/apr.v4n3p94

: M. Abu-Shady, Heavy Quarkonia and Mesons in the Cornell Potential with Harmonic Oscillator Potential in the N-dimensional Schrödinger Equation, international Journal of Applied Mathematics and Theoretical Physics 2(2) (2016)16-20. http://dx.doi.org/10.11648/j.ijamtp.20160202.11

: E.S. William, E. P. Inyang and E. A. Thompson, Arbitrary l-solutions of the Schrodinger equation interacting with Hulthén-Hellmann potential model, Revista Mexicana de Física 66(6) (2020) 730-741. https://doi.org/10.31349/RevMexFis.66.730

: I.O. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, Approximate solutions of the Schrodinger equation with Hulthén-Hellmann potentials for a quarkonium system, Rev. Mex. Fis. 67 (3) (2021) 482-490. https://doi.org/10.31349/RevMexFis.67.482

: E.P. Inyang, I.O. Akpan, J.E. Ntibi and E.S. William, Masses and thermodynamic properties of a quarkonium system, Canadian Journal of Physics 99(999) (2021) 1-9. https://doi.org/10.1139/cjp-2020-0578

: R.J. Adler and D.I. Santigo, On gravity and the uncertainty principale, Mod. Phys. Lett. A 14 (20) (1999) 1371. https://doi.org/10.1142/s0217732399001462.

: F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment, Phys.Lett. B 452(1-2) (1999) 39-44. https://doi.org/10.1016/s0370-2693(99)00167-7

: P. M. Ho and H. C. Kao, Noncommutative Quantum Mechanics from Noncommutative Quantum Field Theory, Phys. Rev. Lett. 88(15) (2002) 151602. https://doi.org/10.1103/physrevlett.88.151602

: P. Gnatenkon, Parameters of noncommutativity in Lie-algebraic noncommutative space, Phys. Rev. D 99(2) (2019) 026009. https://doi.org/10.1103/physrevd.99.026009

: A. Connes, M.R. Douglas and A. Schwarz, Noncommutative geometry and Matrix theory, Journal of High Energy Physics 1998(02) (1998) 003. https://doi.org/10.1088/1126-6708/1998/02/003

: O. Bertolami, J.G. Rosa, C.M.L. De Aragao, P. Castorina and D. Zappala, Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics, Mod. Phys. Lett. A 21(10) (2006) 795-802. https://doi.org/10.1142/s0217732306019840

: A. Maireche, A Model of Modified Klein-Gordon Equation with Modified Scalar-vector Yukawa Potential, Afr. Rev Phys. 15: 0001 (2020) 1-11.

: A. Maireche, Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles, International Frontier Science Letters 11 (2017) 29-44. https://doi.org/10.18052/www.scipress.com/IFSL.11.29

: A. Maireche, Nonrelativistic treatment of Hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative Quantum mechanics, International Journal of Geometric Methods in Modern Physics 17(5) (2020) 2050067. https://doi.org/10.1142/S021988782050067X

: A. Maireche, Modified Unequal Mixture Scalar Vector Hulthén-Yukawa Potentials Model as a quark-antiquark Interaction and Neutral Atoms via Relativistic Treatment Using the Approximation of the Centrifugal Term and Bopp's Shift Method, Few-Body Syst. 61: 30 (2020). https://doi.org/10.1007/s00601-020-01559-z.

: A. Maireche, The Investigation of Approximate Solutions of Deformed Klein-Gordon and Schrödinger Equations Under Modified More General Exponential Screened Coulomb Potential Plus Yukawa Potential in NCQM Symmetries, Few-Body Syst 62:66 (2021). https://doi.org/10.1007/s00601-021-01639-8

: A. Maireche, A Theoretical Model of Deformed Klein-Gordon Equation with Generalized Modified Screened Coulomb Plus Inversely Quadratic Yukawa Potential in RNCQM Symmetries, Few-Body Syst. 62, 12 (2021). https://doi.org/10.1007/s00601-021-01596-2

: A. Maireche, Solutions of Klein-Gordon equation for the modified central complex potential in the symmetries of noncommutative quantum mechanics, Sri Lankan Journal of Physics 22(1) (2021) 1-19. http://doi.org/10.4038/sljp.v22i1.8079

: A. Maireche and Djenaoui Imane, A New Nonrelativistic Investigation for Spectra of Heavy Quarkonia with Modified Cornell Potential: Noncommutative Three-Dimensional Space and Phase Space Solutions, J. Nano- Electron. Phys. 8 No 3 (2016) 03024. https://doi.org/10.21272/jnep.8(3).03025

: A. Maireche, A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries, J. Nano- Electron. Phys. 8 No 2 (2016) 02046. https://doi.org/10.21272/jnep.8(2).02046

: A. Maireche, A New Model for Describing Heavy-Light Mesons in The Extended Nonrelativistic Quark Model Under a New Modified Potential Containing Cornell, Gaussian and Inverse Square Terms in The Symmetries Of NCQM, To Phys. J. 3 (2019) 197-215.

: A. Maireche, A New Asymptotic Study to the 3-Dimensional Radial Schrödinger Equation under Modified Quark-antiquark Interaction Potential, J Nanosci Curr Res. 4(1) (2019) 1000131.

: A. Maireche, New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank's Scales, J. Nano-Electron. Phys. 8(1) (2016) 01020-1. https://doi.org/10.21272/JNEP.8(1).01020

: A. Maireche, Heay-light mesons in the symmetries of extended nonrelativistic quark model, Yanbu Journal of Engineering and Science 17 (2019) 51-63.

: A. Maireche, A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential, Sri Lankan Journal of Physics 21 (2020) 11-35. http://DOI.org/ 10.4038/sljp. v20i0

: P. Faccioli, C. Lourenço, M. Araújo, V. Knünz, I. Krätschmerand J. Seixas, Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns, Physics Letters B 773 (2017) 476-486. https://doi.org/10.1016/j.physletb.2017.09.00

: A.A. Safaeia, H. Panahia, and H. Hassanabadi, Analysis of nonrelativistic particles in noncommutative phase-space under new scalar and vector interaction terms, Rev. Mex. Fis. 67 (1) (2021) 84-90. https://doi.org/10.31349/RevMexFis.67.84.

: J. Zhang, Fractional angular momentum in non-commutative spaces, Phys. Lett. B 584(1-2) (2004) 204-209. https://doi.org/10.1016/j.physletb.2004.01.049

: A. Maireche, A New Approach to the Approximate Analytic Solution of the Three-Dimensional Schrödinger Equation for hydrogenic and Neutral Atoms in the Generalized Hellmann Potential Model, Ukr. J. Phys. 65(11) (2020) 987. https://doi.org/10.15407/ujpe65.11.987

: A. Zachos, Geometrical evaluation of star products, Journal of Mathematical Physics 41(7) (2000) 5129-5134. https://doi.org/10.1063/1.533395

: E.M.C. Abreu, J.N. Ananias, A.C.R. Mendes, C. Neves, W. Oliveira and M.V. Marcial, Lagrangian formulation for noncommutative nonlinear systems, International Journal of Modern Physics A 27(09) (2012) 1250053. https://doi.org/10.1142/s0217751x12500534

: J. Gamboa, M. Loewe and J.C. Rojasn, Noncommutative quantum mechanics, Phys. Rev. D 64 (2001) 067901. https://doi.org/10.1103/PhysRevD.64.067901.

: E.F. Djemaï and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space, Commun. Theor. Phys. (Beijing, China) 41(6) (2004) 837-844. https://doi.org/10.1088/0253-6102/41/6/837

: Y. Yi, L. Kang, W. Jian-Hua and C. Chi-Yi, Spin-1/2 relativistic particle in a magnetic field in NC phase space, Chinese Physics C 34(5) 7 (2010) 543-54. https://doi.org/10.1088/1674-1137/34/5/005

: S. Aghababaei and G. Rezaei, Energy level splitting of a 2D hydrogen atom with Rashba coupling in non-commutative space, Commun, Theor. Phys. 72 (7pp) (2020) 125101. https://doi.org/10.1088/1572-9494/abb7cc

: O. Bertolami and P. Leal, Aspects of phase-space noncommutative quantum mechanics, Phys. Lett. B 750 (2015) 6-11. https://doi.org/10.1016/j.physletb.2015.08.024

: O. Bertolami, J.G. Rosa, C.M. L. de Aragao, P. Castorina and D. Zappala, Noncommutative gravitational quantum well, Phys. Rev. D 72(2) (2005) 025010-1. https://doi.org/10.1103/physrevd.72.025010

: K. Li and J. Wang, The topological AC effect on non-commutative phase space, The European Physical Journal C 50(4) (2007) 1007-1011. https://doi.org/10.1140/epjc/s10052-007-0256-0

: J. Wang and K. Li, The HMW effect in noncommutative quantum mechanics, Journal of Physics A: Mathematical and Theoretical 40(9) (2007) 2197-2202. https://doi.org/10.1088/1751-8113/40/9/021

: A. Maireche, New Bound State Energies for Spherical Quantum Dots in Presence of a Confining Potential Model at Nano and Plank's Scales, NanoWorld J. 1(4) (2016) 122-129. https://doi.org/10.17756/nwj.2016-016

: M.A. De Andrade and C. Neves, Noncommutative mapping from the symplectic formalism, Journal of Mathematical Physics 59(1) (2018) 012105. https://doi.org/10.1063/1.4986964

: E.M.C. Abreu, C. Neves and W. Oliveira, Noncommutative from the symplectic point of view, International Journal of Modern Physics A 21(26) (2006) 5359-5369. https://doi.org/10.1142/s0217751x06034094

: K.P. Gnatenko and V.M. Tkachuk, Upper bound on the momentum scale in noncommutative phase space of canonical type, EPL (Euro physics Letters) 127(2) (2019) 20008. https://doi.org/10.1209/0295-5075/127/2000

: K.P. Gnatenko and Tkachuk, Composite system in rotationally invariant noncommutative phase space, Int. J. Mod. Phys. A 33(07) (2018) 1850037. https://doi.org/10.1142/s0217751x18500379

: A. Maireche, A New Relativistic Study for Interactions in One-electron atoms (Spin ½ Particles) with Modified Mie-type Potential, J. Nano- Electron. Phys. 8(4) (2016) 04027. https://doi.org/10.21272/jnep.8(4(1)).04027

: A. Maireche, A Complete Analytical Solution of the Mie-Type Potentials in Non-commutative 3-Dimensional Spaces and Phases Symmetries, Afr. Rev. Phys. 11:0015 (2016) 111-117. http://lamp.ictp.it/index.php/aphysrev/article/view/1259/490.

: A. Maireche, Modified Schrödinger Equation with Modified QM Gravitational and Harmonic Oscillator Potentials in Symmetries of Non-commutative QM, Afr. Rev. Phys. 14: 0018 (2019) 130-1398 . http://lamp.ictp.it/index.php/aphysrev/article/view/1717/613.

: A. Maireche, Bound state solutions of the modified Klein-Gordon and Schrödinger equations for arbitrary l-state with the modified Morse potential in the symmetries of noncommutative quantum mechanics, Journal of Physical Studies 25(1) (2021) 1002. https://doi.org/10.30970/jps.25.1002

: A. Maireche, A theoretical study of the modified equal scalar and vector Manning-Rosen potential within the deformed Klein-Gordon and Schrodinger in relativistic noncommutative quantum mechanics and nonrelativistic noncommutative quantum mechanics symmetries, Rev. Mex. Fis. 67 (5) (2021) 050702 1. https://doi.org/10.31349/RevMexFis.67.050702

: L. Gouba, A comparative review of four formulations of noncommutative quantum mechanics, Int. J. Mod. Phys. A 31(19) (2016) 1630025. https://doi.org/10.1142/s0217751x16300258

: L. Mezincescu, Star operation in quantum mechanics, e-print (2000). arXiv: hep-th/0007046v2.

: F. Bopp, La mécanique quantique est-elle une mécanique statistique classique particulière Ann. Inst. Henri Poincaré 15 (1956) 81.

: A. Maireche, The Relativistic and Nonrelativistic Solutions for the Modified Unequal Mixture of Scalar and Time-Like Vector Cornell Potentials in the Symmetries of Noncommutative Quantum Mechanics, Jordan J. Phys. 14 (1) (2021) 59-70. https://doi.org/10.47011/14.1.6

: A. Maireche, The Klein-Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space, Mod. Phys. Lett. A 35(5) (2020) 052050015. https://doi.org/10.1142/s0217732320500157

: A. Maireche, Bound-state Solutions of Klein-Gordon and Schrödinger Equations for Arbitrary l-state with Linear Combination of Hulthén and Kratzer Potentials, Afr. Rev Phys. 15:003 (2020) 19-31. http://lamp.ictp.it/index.pIGCp/aphysrev/article/view/1779/620.

: H. Motavalli and A.R. Akbarieh, Klein-Gordon equation for the Coulomb potential in noncommutative space, Mod. Phys. Lett. A 25(29) (2010) 2523-2528. https://doi.org/10.1142/s0217732310033529

: M. Darroodi, H. Mehraban and H. Hassanabadi, The Klein Gordon equation with the Kratzer potential in the noncommutative space, Mod. Phys. Lett. A 33 No. 35 (2018) 1850203. https://doi.org/10.1142/s0217732318502036

: A. Maireche, Theoretical Investigation of the Modified Screened cosine Kratzer potential via Relativistic and Nonrelativistic treatment in the NCQM symmetries, Lat. Am. J. Phys. Educ. 14 (3) (2020) 3310-1.

: A. Maireche, A new theoretical study of the deformed unequal scalar and vector Hellmann plus modified Kratzer potentials within the deformed Klein--Gordon equation in RNCQM symmetries, Mod. Phys. Lett. A 38 (2021) 2150232. https://doi.org/10.1142/S0217732321502321

: A. Maireche, The investigation of approximate solutions of Deformed Klein-Fock-Gordon and Schrödinger Equations under Modified Equal Scalar and Vector Manning-Rosen and Yukawa Potentials by using the Improved Approximation of the Centrifugal term and Bopp's shift Method in NCQM Symmetries, Lat. Am. J. Phys. Educ. 15(2) (2021) 2310-1.

: A. Maireche, Heavy quarkonium systems for the deformed unequal scalar and vector Coulomb-Hulthén potential within the deformed effective mass Klein-Gordon equation using the improved approximation of the centrifugal term and Bopp's shift method in RNCQM symmetries, International Journal of Geometric Methods in Modern Physics 18(13) (2021) 2150214. https://doi.org/10.1142/S0219887821502145

: A. Maireche, New Relativistic Bound States for Modified Pseudoharmonic Potential of Dirac Equation with Spin and Pseudo-Spin Symmetry in One-electron Atoms, Afr. Rev. Phys. 12: 0018 (2018) 130-143 . =

: A. Saidi and M.B. Sedra, Spin-one (1 + 3) dimensional DKP equation with modified Kratzer potential in the non-commutative space, Mod. Phys. Lett. A 35(5) (2019) 2050014. https://doi.org/10.1142/s0217732320500145

: S. Gradshteyn and I. M. Ryzhik: Table of Integrals, Series and Products, 7th. ed.; Elsevier, edited by Alan Jeffrey (the University of Newcastle upon Tyne, England) and Daniel Zwillinger (Rensselaer Polytechnic Institute USA) 2007.

: Wolfram Research, https://functions.wolfram.com/Polynomials/LaguerreL3/21/ShowAll.html.

: K. Bencheikh, S. Medjedel and G. Vignale, Current reversals in rapidly rotating ultracold Fermi gases, Phys. Lett. A. 89(6) (2014). https://doi.org/10.1103/physreva.89.063620

: R. Kumar and F. Chand, Asymptotic Study to the N-Dimensional Radial Schrödinger Equation for the Quark-Antiquark System. Communications in Theoretical Physics 59(5) (2013) 528-532. https://doi.org/10.1088/0253-6102/59/5/02

: S.M. Kuchin and N.V. Maksimenko, Theoretical estimations of the spin-averaged mass spectra of heavy quarkonia and Bc mesons, Universal Journal of Physics and Application 7 (2013) 295. https://doi.org/10.13189/ujpa.2013.010310

: P.A. M. Dirac, The quantum theory of the electron. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 117(778) (1928) 610-624. https://doi.org/10.1098/rspa.1928.0023

: N. Kemmer, Quantum theory of Einstein-Bose particles and nuclear interaction, Proceedings of the Royal Society A 166 (1938) 127-153. https://doi.org/10.1098/rspa.1938.0084

: R.J. Duffin, On the characteristic matrices of covariant systems, Phys. Rev. 54(12) (1938) 1114. https://doi.org/10.1103/PhysRev.54.1114

: G. Petiau, University of Paris thesis, Published in Academie Royale de Médecine de Belgique, Classe des Sciences, Memoires in 8 n, 16, 2, (1936).

: M.D. Scadmn, Advanced Quantum Theory and Its Applications Through Feynman Diagrams (New York Springer) (1979)

Downloads

Published

2022-08-16

How to Cite

[1]
A. Maireche, “The Impact of deformed space-phase parameters into HAs and HLM systems with the improved Hulthen plus Hellmann potentials model in the presence of temperature-dependent confined Coulomb potential within the framework of DSE”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050702 1–, Aug. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory