Topological phases and entanglement in real space for 1D SSH topological insulator: effects of first and second neighbor-hoppings
DOI:
https://doi.org/10.31349/RevMexFis.68.031404Keywords:
Atoms-cell, topological phase transitions, maximal entangledAbstract
The hybrid atoms-cell site entanglement in a one-dimensional Su-Schrieffer-Heeger (SSH) topological insulator with first and second neighbor hopping in space representation of finite chains is analyzed. The geometrical phase is calculated by the Resta electric polarization and the entanglement in the atomic basis by the Schmidt number. A relation between entanglement and the topological phase transitions (TPT) is given since the Schmidt number has local critical points of maximal entangled (ME) states in the singularities of the geometrical phase. States with second neighbors have higher entanglement than first-neighbors hopping. The general conditions to produce ME hybrid Bell states and the localization-entanglement relation are given.
References
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045.
X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83 (2011) 1057. https://doi.org/10.1103/RevModPhys.83.1057.
Y.-H. Li and R. Cheng, Magnonic su-schriefferheeger model in honeycomb ferromagnets, Phys. Rev. B 103 (2021) 014407. https://doi.org/10.1103/PhysRevB.103.014407.
S. Bohling, G. Engelhardt, G. Platero, and G. Schaller, Thermoelectric performance of topological boundary modes, Phys. Rev. B 98 (2018) 035132. https://doi.org/10.1103/PhysRevB.98.035132.
C. L., Kane, T. C., and Lubensky, Topological boundary modes in isostatic lattices, Nat. Phys. 10 (2013) 39. https://doi.org/10.1038/nphys2835.
G. G. Naumis and P. Roman-Taboada, Mapping of strained graphene into one-dimensional hamiltonians: Quasicrystals and modulated crystals, Phys. Rev. B 89 (2014) 241404. https://doi.org/10.1103/PhysRevB.89.241404.
M. Webber, F. F. Assaad, and M. Hohenadler, Thermodynamic and spectral properties of adiabatic peierls chains, Phys. Rev. B 94 (2016) 155150. https://doi.org/10.1103/PhysRevB.94.155150.
F. Ziwei, F. Nianzu, Z. Huaiyuan, Z. Wang, Dong, Zhao, Shaolin, and Ke, Extended ssh model in nonhermitian waveguides with alternating real and imaginary couplings, MDPI:Applied Sciences 10 (2020) 3425. https://doi.org/10.3390/app10103425.
A. Neto, F. Guinea, N. M. R. Peres, K. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2010) 109. https://doi.org/10.1103/RevModPhys.81.109.
X.-L. Lu, and H. Xie, Topological phases and pumps in the su-schrieffer-heeger model periodically modulated in time, J. Phys.: Condens. Matter 31 (2019) 495401. https://doi.org/10.1088/1361-648X/ab3d72.
P. Roman-Taboada and G. G. Naumis, Spectral butterfly and electronic localization in rippled-graphene nanorib6 bons: Mapping onto effective one-dimensional chains, Phys. Rev. B 92 (2015) 035406. https://doi.org/10.1103/PhysRevB.92.035406.
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104 (2010) 040502. https://doi.org/10.1103/PhysRevLett.104.040502.
G. G. Naumis, L. A. Navarro-Labastida, E. Aguilar- Mendez, and A. Espinosa-Champo, Reduction of the twisted bilayer graphene chiral hamiltonian into a 2 × 2 matrix operator and physical origin of flat bands at magic angles, Phys. Rev. B 103 (2021) 245418. https://doi.org/10.1103/PhysRevB.103.245418.
Y.-X. Chen and S.-W. Li, Quantum correlations in topological quantum phase transitions, Phys. Rev. A 81 (2010) 032120. https://doi.org/10.1103/PhysRevA.81.032120.
P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Measuring multipartite entanglement through dynamic susceptibilities, Nature Physics 12 (2016) 782. https://doi.org/10.1038/nphys3700.
D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82 (2010) 1959. https://doi.org/10.1103/RevModPhys.82.1959.
J. Li, T. Yu, H.-Q. Lin, and J. Q. You, Probing the nonlocality of majorana fermions via quantum correlations, Nature Scientific
Reports 408 (2014) 4930. https://doi.org/10.1038/srep04930.
T. Yu and J. H. Eberly, Quantum open system theory: Bipartite aspects, Phys. Rev. Lett. 97 (2006) 140403. https://doi.org/10.1103/PhysRevLett.97.140403.
S.-P. Zeng, H.-L. Shi, X. Zhou, X.-H. Wang, S.-Y. Liu, and M.-L. Hu, Protecting quantum correlations of the xxz model by topological boundary conditions, Nature Scientific Reports 1083 (2019) 2389. https://doi.org/10.1038/s41598-018-37474-x.
J. Cho and K. W. Kim, Quantum phase transition and entanglement in topological quantum wires, Nature Scientific Reports 7 (2017) 2745. https://doi.org/10.1038/s41598-017-02717-w.
K. Morita, S. Sota, and T. Tohyama, Magnetic phase diagrams of the spin-1=2 Heisenberg model on a kagomestrip chain Emergence of a Haldane phase, Phys. Rev B 104 (2021) 224417, https://doi.org/10.1103/PhysRevB.104.224417.
D. C. Brody and L. P. Hughston, Geometric quantum mechanics, J. Geometry and Physics 38 (2001) 19. https://doi.org/10.1016/S0393-0440(00)00052-8.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81 (2009) 865. https://doi.org/10.1103/RevModPhys.81.865.
S. Valerio, et al., The security of practical quantum key distribution, Rev. Mod. Phys. 81 (2009) 1301. https://doi.org/10.1103/RevModPhys.81.1301.
J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Multiphoton entanglement and interferometry, Rev. Mod. Phys. 84 (2012) 177. https://doi.org/10.1103/RevModPhys.84.777.
G. Nicolas, R. Gregoire, W. Tittel, Hugo, and Zbinden, Quantum cryptography, Rev. Mod. Phys. 74 (2012) 145. https://doi.org/10.1103/RevModPhys.74.145.
A. Ekert and P. L. Knight, Entangled quantum systems and the schmidt decomposition, Am. J. Phys. 63 (1995) 415. https://doi.org/10.1119/1.17904.
J. Sperling and W. Vogel, Entangled quantum systems and the schmidt decomposition, Phys. Rev. A 83 (1995) 042315. https://doi.org/10.1103/PhysRevA.83.042315.
D. Obana, F. Liu, and K. Wakabayashi, Topological edge states in the su-schrieffer-heeger model, Phys. Rev. B 100 (2019) 075437. https://doi.org/10.1103/PhysRevB.100.075437.
Y. Kuno, Phase structure of the interacting su-schriefferheeger model and the relationship with the gross-neveu model on lattice, Phys. Rev. B 99 (2019) 064105. https://doi.org/10.1103/PhysRevB.99.064105.
C. Li and A. E. Miroshnichenko, Extended ssh model: Non-local couplings and non-monotonous edge states, MDPI 1 (2018) 2. https://doi.org/10.3390/physics1010002.
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations in polyacetylene, Phys. Rev. B 22 (1980) 2099, https://doi.org/10.1103/PhysRevB.22.2099. [Erratum: Phys. Rev. B 28 (1983) 1138].
R. Resta, Manifestations of berry’s phase in molecules and condensed matter, J. Phys. Condens. Matter 12 (2000) 9. https://doi.org/10.1088/0953-8984/12/9/201.
B. Simon, Holonomy, the quantum adiabatic theorem, and berry’s phase, Phys. Rev. Lett. 51 (1983) 2167. https://doi.org/10.1103/PhysRevLett.51.2167.
R. Resta, Quantum-mechanical position operator in extended systems, Phys. Rev. Lett. 80 (1998) 1800. https://doi.org/10.1103/PhysRevLett.80.1800.
G. Ortiz and R. M. Martin, Macroscopic polarization as a geometric quantum phase: Many-body formulation, Phys. Rev. B 49 (1994) 14202. https://doi.org/10.1103/PhysRevB.49.14202.
R. Li and M. Fleischhauer, Finite-size corrections to quantized particle transport in topological charge pumps, Phys. Rev. B 96 (2017) 085444. https://doi.org/10.1103/PhysRevB.96.085444.
B. Hetenyi, Y. Pulcu, and S. Doan, Calculating the polarization in bipartite lattice models: Application to an extended su-schrieffer-heeger model, Phys. Rev. Lett. 103 (2021) 075117. https://doi.org/10.1103/PhysRevB.103.075117.
A.Y. Bogdanov, and K. Valiev, Schmidt information and entanglement of quantum systems, Moscow Univ. Comput. Math. Cybern. 31 (2007) 33. https://doi.org/10.48550/arXiv.quant-ph/0512062.
J. H. Eberly, Schmidt analysis of pure-state entanglement, Laser Physics 16 (2006) 921. https://doi.org/10.1134/S1054660X06060041.
J. Sperling and W. Vogel, The schmidt number as a universal entanglement measure, Physica Scripta 83 (2006) 045002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Leonardo Antonio Navarro Labastida, F. A. Dom´ınguez-Serna, F. Rojas
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.